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NBZ FE LA G R E A8 . 3 3R3K MeRS40
(Arginine/serine-rich 40 ) {Fa S+ ( Arabidopsis thaliana)
LA B B R e, A 3 DR e I Hh ad ARk ST
(catalase, CAT) . HLIA I 2 1:d %8 16 4 B (ascorbate
peroxidase, APX) il % b ¥ i (peroxidase, POD)
T PR 258 10 B, PR A hid 3k MeRS40 1%
{ASRITE -y 6 S ¢ 1) N %N ) ST V- S 12 T N
BN R 3 1 HILI 0T 35 B T ER VR Rl R OC E B
ERIE T, XA AR T Sk 2 oA, SRS e F
36 MM SPUACH) 22 TR, W MY ER
FES . AR, HYERTEEL 4SS
T {5 3 g

RARVE A YR N EZA MR, 7%
IR 300 B, 308 2 45 A A %) 995 D S5 1 L ] DA T
AR 3, A BOCHE EIME . AN SR F1 R I
JidE = T /N2 (Triticum aestivum) 21 Ht 80L&
Yy B AT TS P, [T EhRE S 3gTR0Y, oK
IR HAG 5 s R RN, 28R
PIsE T, JA-le CRATRR R0 2R ) itk e, HAaz ik
F-box & [1 COI1 (CORONATINE INSENSITIVE!)
1T B3 12 R M SCF" & Ak, M HE 454
B JAZ(Jasmonate ZIM-domain) PH.i&8 & 72
Ak, IFiE T 26S B IR AR AR, IR
SRR, Ja SR AR 0 e e i LT, JAZ 2R
Ak BHL 38 5 11 78 25 A0 2 34 12 38 10 1) 81— A 1
H, BRILZ A, JAZs i ] LA [R) HeAth i 5% DA+ M AL RH
182 A G, DA SRR (5 5 i B A B
R IME 58 B A AR IS RN, JAZ2 1
o e SEL Ve YIS R BB e e S N R P IR N
JihiE o AT ScJAZ FTGHE R AEEL i R 1 Fak,
Horh ScJAZ2 e W R ihiA 1)i75 S R R gIee s
(Ananas comosus )" 1 ff (Mentha canadensis)!""
W JAZ2 TE AR AL BN IR T A A L AcJAZ2 F
McJAZ2 RS2 ER 0 B 5, 2358 B A [ A 35
Tt BRIV Z ORI, JAZ2 FEER 0 S
T, KRR AT B, (HE A D5
WiE T JAZ2 FERL Y WXL 38 v i D se . i an
FEAU R ST, ad ik GsJAZ2 £ 55 NHX1(Na'/
H" antiporter 1))k KF [T, $&/5 Nat i fifs
iz 8 PR IE TR AR AR ER S, FAR Y HT i
G R JAZ 1E A Z FhAE P T EhpE, (R AR 2
AR SRR D . TEARE T, At LB, KZ

B JAZ F N FRIRZ B i = 3 R, Ho,
Manes.03G042500 F11 Manes.16G088300 |- i#%5 N
Bl {H JAZ 85 Anfa] PR ACE it £tk DA KL
T HLEIER i A RGE, I, AW I8 A2 4R
B 124° (‘SC124° ) g BE 3R AT MeJAZ2.2 FE N, 43
M HAE SR a0 R Feak AR R AR AL, I8 i e 1
X2 32 SC i e S e AR A ik B AR SRR, B AE R
BB AREYOR AP RS SRR

1 M#EFE

1.1 W8 SEE h R BRI AR A AR
124’ (‘SC124°), Hh 1 R R4 PSS DXOAR S A o 9%
TRIIRAE o B U AR SEAT IR 15 ~ 20 cm 1Y
2B R TE IR E N E SR L AR A S R S
FIFETR (Vs e Vig e = LD, AR AR 12 h o
HEAN 12 h PR, R BE I TE 27 ~ 30 °C, E R
70%2",

DH5a K 7 #T B J% 32 25 4 il (DL1001S) 1 A
Vg A b AE AR AT IR L GV3101 R FTF IR SZ
BN (ZC141) W b st B 1] s 2 9 5 DR R 4
A BRI A, Wi SR £ (K 1622) I H 82K K /R
BT, BIRBHEEIE DNA (8137 £ (DP209)
HFORE /N 4238 7] & (DP104) 1 [ K AR 2E 1k B
/A7), DO Supplement-Leu/-Trp(PM2220) 5 DO
Supplement-Ade-His-Leu-Trp(PM2110) 5 57 ikt [
BRI A AU SRR A PR A R . K% cDNA
SCIE, AH109 FEREIRZ A5 AN, TRk WAL a8 Feak 2k
& pGADT7 H1 pGBKT7 £33k [ 5256 28 VR AF o

51906 BRI 3 347 Hh b s SR AR W e A B
AN FETE
1.2 HYEEFESH A Y H 4K
Phytozome (https://phytozome-next.jgi.doe.gov/) |-
AR IT JAZ2 LT, DI E0)P 5 AR
L2 SO BLAST $2, 2048 2954~ TR I Pk
AT EEIN MeJAZ2.1 F1 MeJAZ2.2., M Phytozome
R EIIEEIY . IKAE(Oryza sativa) . T (Solanum
Iycopersicum) 55 Z FIEY) JAZ2 W2 IR T3, 5L
ik P 52 B i 5 MEGA 11 43 7 Ak it A5 20 by
A HEAT 51 X R R G AR R P,
MeJAZ2.1 Fl MeJAZ2.2 {2 3£ R ¥ 5 1 NCBI fY
CDD (https://www.ncbi.nlm.nih.gov/cdd ) 5 4 &
A3 HEXT, 2 3R B AR S 45 K 3k 4P 38 42 ChiPlot
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KA MeJAZ2.2 FE N 1 v e b LA 2 A ke 41

(https://chiplot.online/) 2 &

1.3 EEMBT MeJAZ2.1 70 MeJAZ2.2 HIRIZE
AT BEEREEIR 3 ~ 4 8 HA ORI R A —
FHAE SC124° K, B B 200 mmol-L™' Y NaCl
VAL BRA EARTS, 5B 3 IRER . A HITE 0. 3,
6. 12, 24 h BUKRZE 20, #E 5L B T R dusi A
WA, J5 B T80 °C VKA ZRAr o e AR Z N /i

JE&, il i CTAB 1:P2 SR UK 2 RNA, I8 FH 0 4%
SR RNA Jf%°h cDNA. i SGN VIGS
Tool §ifi & 1 5 P v 4 = M B 19 B,
Primer5 & i1 % & 51 ¥, W2 519~ MeEF1a-F/R
(1) RSP0 7 i3 5% 5% PCR(Real-time
RT-PCR, RT-qPCR)R 15 %4k, /- Ar e £h g
MeJAZ2.1 Fl MeJAZ2.2 Feik 704k,

x1 SIMFIER

Tab. 1

Primer sequence information

EIE7E

Primer

SIYFA(5-3")

Primer sequence (5'-3")

pGADT7-MeJAZ2.2-F
pGADT7-MeJAZ2.2-R
pGBKT7-F
pGBKT7-R
qMeJAZ2.1-F
qMeJAZ2.1-R
qMeJAZ2.2-F
qMeJAZ2.2-R
MeEF1a-F

MeEF1a-R
MeJAZ2.2-pTRV-F
MeJAZ2.2-pTRV-R

gccatggaggccagtgaattc ATGGCTGGTTCGCCGGAA
atgcccaccegggtggaattcCTACTGGCCAAGATTGAGCAGC
GTAATACGACTCACTATAGGGCGA
TTTTCGTTTTAAAACCTAAGAGTC
ATGGCTGGCTCGCCGGAATTCGTTG
ATTTCCTTCACCGCTG
CGCGGATCCAAGGAGGTTATGCTCTTGGC
TCCCCCGGGGGCTTGAGTGGGAGGTTGC
TGAACCACCCTGGTCAGATTGGAA
AACTTGGGCTCCTTCTCAAGCTCT
CGCGGATCCAAGGAGGTTATGCTCTTGGC
TCCCCCGGGGGCTTGAGTGGGAGGTTGC

14 EHBBTARKE MeJAZ22MFI R RBLE
DA ZE cDNA AR, FR: 5151 Y MeJAZ2.2-
pTRV F/R(FE DI B H B A B, £ T4 DNA & %
g f b T 5 pTRV2 #4Ki%E 4%, IF 4 163] DH5a K
kR . PR PR R FERE 37 °C iR, /MR
R SR ISR I Bl DA A, 2 A GV3101
RFFRIEZET, DR RSERMEN ., K&
pTRV2 ZRAK ) MeJAZ2.2 HAAT B 1H AR Al pTRV 1
PFFRRRFRALA 28 °C FER G FRE, 7 A 20 mL
LB J5 32591554k 5 ~ 6 h, 3 500 r'min”™" £5.0> 10 min
Fr LI IR A HRCE L2510 mmol -1
MgCl,, 50 mmol-L™" MES, 150 umol-L™" AS) &%,
FiFE 22 ODgyy=0.6, SHABUR A o FH— RS 4%
WA E R BIARE T E A, 12~ 14d
Ja WOR 2 12 7 53 A MeJAZ2.2 FEPIH ]
JKAEEI, F 200 mmol-L' ) NaCl i i &b 3 41 41
FRANT BERE, IEE 0 d F1 4 d AR R AL

1.5 BEZHE pGADTT-MeJAZ2.2 HIHIE N

K SC124° M J v 42 B S RNA JF I 5%
cDNA. 7 Phytozome A& 2 %k #if £ i 4 4k %I
MeJAZ2.2 1) 4t [X ¥ 51 (csoding sequence, CDS),
F Primer5 B&15 W) pGADT7-MeJAZ2.2-F/R(F 1),
DL cDNA WA Y 18 MeJAZ2.2 /) CDS, BE M HL 1k
Rzl 7 B RE o K5 PCR =4 A FH e [l i) & ml
W, i) EcoR 1 VIR pGADTT %5 28 Tk [v] Y5 5
20 3% B2, I %5 1k B) DHSa K I AT & . B TE
PCR B ik 2571 K /N R B 36— 20, A NPtk
AR SE TR B FR i o ok /N IR 6 4 BT
Wi, e JFiE AT EcoR T BLRGY) 50 1E R 3 36 E 4
F )

1.6 BEBEHEWIE ¥ pGADT7-MeJAZ2.2 Ji
i F pGBKT7 25 £ FUkL S i IR 2, B Al & 4r i
AH109 B0, LA pGADT7 25/ pGBKT7
SRR T A5 IR TR R4 21 R TE SD/-
Leu/-Trp [BAREFRIE I, 28 °C K FRAHICE 3 ~ 4 d.
Pk SD/-Leu/-Trp [EARRE TR A (e BE LT
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%, FAN ) SD/-Lew/-Trp MARR; FE 36, AL 5 i
BE10°, 107, 1072, 107 4 ANREERS B, 43 ) 5 A T
SD/-Leu/-Trp #il SD/-Ade-His-Leu-Trp [ 1A § 3 15
Fedk b K MFRUE: SD/-Leu/-Trp BAE; 3R 5L A
1% B 1 7% 21 K¢, SD/-Ade-His-Leu-Trp [f] {4 35 35 5t
IR RE AR, FTUER] MeJAZ2.2 FE A TC A
TG TG 27 2 P ARG IR 28 A RIS AR K,
WA RE MeJAZ2.2 T FAAAE H BTG 16

1.7 BEEWZIAL I pGADT7-MeJAZ2.2 it
Hi 5 KRB cDNA SCHE kL 55 i iR 57, B4 5k
0.1 pgo A 1 pg FIAEPERY Carrier DNA (fi: 0K
DNA)F1 600 pL Y PEG/LiAc il il B £ %% 1k it 75
TR - H 200 puL 48 479 AH109 BEREERAZ 540
J I A TR W T, A 28 °C EFEAE 1 h A
70 uL ) DMSO, 42 °C 7K i+ 30 min 5¢ B % 1t o
12 000 r-min"' &.L» 30 s F_ L3, YLiEH 400 uL B
Be il B9 IxTE ¥ W A%, 43 31Uk T SD/-Leu/-Trp
1 SD/-Ade-His-Leu-Trp [ {5l 35 553 I, & T

28 C -4 3 ~ 4 d2, EREEIRIE AR TE
AR R A, JUIIE B R A Al iy o 3 B D ke
M b A RE PR P AT TR 7 PCR, P Hh b
B 95 51, 7E Phytozome A 255415 JE v 43
BrXT L BE PR 91, it e Asit BEAE R o

2 FERMOH

2.1 HUWIMRTFEEST AT U MeJAZ2
B 5 H AR R OC R . AR T, K
i, FEIREE 10 MEYIRY JAZ2 TR R MeJAZ2 B
K FH e KSR 40 8 R 48 & B b4 B (& 1-A),
Bootstrap method Z 0% % & 1 000, & B A %
MeJAZ2.1. MeJAZ2.2 [RIFAKE BpJAZ2 . Ktk GhJAZ2
KFH SJAZ2 BRI RE KR Niff—PR
K MeJAZ2.1 Fl MeJAZ2.2 WihfiE, il i {4 51 4544
YR AT LK B, MeJAZ2.1 i T4 FE R FE 41 N St
124 ~ 156 Jy ZIM {RSFEERI, A7 F C ¥ 223 ~ 249
Jg Jas [RSFEERIIER . MeJAZ2.2 BIERRIFHIAE 128 ~

A ® MeJAZ2.1(Manes.16G093500)
99

92

77

85

30

59

B

MelAZ2.1

MeJAZ2.2

o MeJAZ2.2(Manes.03G042500)
BpJAZ2(BPChr06G30991)
GhJAZ2(Gohir.D06GO77500)
SLJAZ2(Solyc12 g009220)
AtJAZ2(AT1G74950)
ZmJAZ2.1(Zm00001d026477)
1000 7,.7422.2(2m00001d002029)
0sJAZ2(LOC 0s03g08320)

36 ShJAZ2(Sobic.001G259400)
PeJAZ2(Potri.003G068000)

L
82l $iJAZ2(Seita.2G053600)

GmJAZ2(Sobic.001G259400)

ZIM

Jas

0 2'0 4'0 6.0 8.0 160 1io 140 180 1éo 260 2ﬁo 240 260
E1 KAESHMYF JAZ2 WEZHEF(A) FIEBRRTEWESH(B)

Fig. 1

Phylogenetic tree of JAZ2 (A) of cassava and other species and protein conserved domain analysis (B)

1:: Manes.16G093500 il Manes.03G042500 & H fFE K 7E phytozome R R E R FE R 4w 5 o B RIS (o ARSTE5 M B
Note: Manes16G093500 and Manes.03G042500 are the target genes numbered in the phytozome plant gene database. Pink and blue: Conservative

structural domains.
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TR ISR MeJAZ2.2 H DR A v I B AT 2 1 Bk 43

160 F1 227 ~ 251 i EFFESA ZIM Fl Jas FR5F4S
Kyt (8 1-B) . ZIM il Jas ¥E Jy JAZ F G HA 1)
PR SE S5 R 3R, N TTTIE SE MeJAZ2.1 Fl MeJAZ2.2
HRJE T JAZ FEHF K

2.2 MeJAZ2.1F0 MeJAZ2.2 ZihiBEE D
HIRGE MeJAZ2.1 Tl MeJAZ2.2 TEA AL hif i 7
AR k. ] 200 mmol- L' #e B S AL A
fob FEARE AR S, 18 3 RT-qPCR 3 AR gk — 443 #r

A MeJAZ2.1
20

—
(O]
T

o
W

AHXSFE K1
Relative transcript levels
S

0 3 6 12 24
s} [E] Time/h

MeJAZ2.1 Fl MeJAZ2.2 TEEE WA T He A Rk K
WAtk . S5 SRUE 2 Fi7R, MeJAZ2.1 1E £k Wria 5%
T HFGGREBRAE 6 h WA _FIRAN, BIRELE 1A%
ik (K 2-A) . MeJAZ2.2 F6 KB40 32 0 )5 %
EE, A PR 12 h B EYE T 21 4%, 7E 24 hik B
H, FHZE 24 5K 2-B) . FREERERI, MeJAZ2.1
Il MeJAZ2.2 25 T Xt R W8 09 )N . MeJAZ2.2
FR BT N B, B T — R .

B MeJAZ2.2
30

20} &

AR SRR

Relative transcript levels

10 +

0 3 6 12 24
Fs 1] Time/h

2 MeJAZ2.1 F1 MeJAZ2.2 TEE B TRIZET L
Fig. 2 Analysis of expression levels of MeJAZ2.1 and MeJAZ2.2 under salt stress
TE: /NG FREFORAPTE 22 5 (P<0.05)
Note: Lowercase letters indicate significant differences (P < 0.05).

23 EhEMET MeJAZ2.2 iM$IkRBLE MK
SEER A T MeJAZ2.2-RNAI M Bk A B2 4y 1 ) 6
Y, T MeJAZ2.2 Tk fa AR . 50 REAH LE, S
#l ¥k MeJAZ2.2-RNAi-1 Fl MeJAZ2.2-RNAi-2
MeJAZ2.2 Fika FIHZE 0.16 1 0.18(1& 3-A), E2
A . X A= R MeJAZ2.2-RNAi 8 Bk A
BT 200 mmol- L S ALEIALBE 4 d 5 kAT
WM. SR ME 3-BrxR, 4bH 4d)5,
MeJAZ2.2-RNAi HEFRA S 4)1 1 AP A= BUR S5 407 1
AR SZ M), B MeJAZ2. 2-RNAT FE AR 155 5 N
JUEE, DS R, S IR L MeJAZ2.2-
RNAi AR 7228 AR B T B G, i 46 i R ™
# (& 3-C), it RS, MeJAZ2.2 W] fig
IE VAR ER M B

2.4 pGADT7-MeJAZ2.2 HIKWHE H T —
AR MeJAZ2.2 VAT AT ER PR 1) 4 F-HL, 2%
IRV I E MeJAZ2.2 I EAEE M ., it A%

B e A 0 3G MeJaz2.2 FEH F 3, &k BLH
CDS Jy 825 bp, L4t 274 N E KL . LA H
cDNA NHH, 115149 pGADT7-MeJAZ2.2-F/R i
17 PCR ¥4, %8 B kG 21 |- B R /N2 800 bp,
55 H AL R PR K —E0(E] 4-A) o FI A RV
HEANE: BB BogfEE] EcoR 1 ¥V pGADT?
BAK L. ER YA S DHSo KA T 1 252 41
fLr, ik B TR VR VR AR PCR B0 3E . 255 18
AN, BB B B G O BE AR ] (18] 4-B)
Pt 5 A-PHPE ek, X5 HBOR VI35 UE (K] 4-C) IF:
MFRE S . PREBIN P45 55 B ry 3 — 80 e b
T IR SRR AU AE S5

2.5 MelJAZ22 EBEHBEWIE Mkt GlEEE L
Fe 58 S0 P A E BB ME AL, B e R E
T pGADT7-MeJAZ2.2 j& A A0E A& &M .
pGADT7-MeJAZ2.2 il pGBKT7 %5 #% Jii ki 3L 7]
AL 2] AH109 B B 3 bR, IF 3% B B X R
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CK MeJAZ2.2-RNAi

MeJAZ2.2

— —
(=) W
T 1

AR &L S K

200 mmol-L' NaCl

MeJAZ2.2-RNAi

Relative transcript levels

[w]

200 mmol-L' NaCl

A. K MeJAZ2.2 HIxHE Rk o /INB RN AEAE B 22 5 (P<0.05); B. I g Eh e 4604 RS A: K ARSI (BRI A 10 ecm); C0 Kk

DB AL B AT AR R B (FRRA 1 em) o

A. Relative transcription level of MeJAZ2.2. Lowercase letters indicate significant differences (P < 0.05); B. Growth of cassava plant under salt stress

(scale: 10 cm); C. Leaf morphology of cassava under salt stress treatment (scale: 1 cm).

B3 MeJAZ2.2 iMHIRIER REEE
Fig.3 MeJAZ2.2 inhibited plant construction and phenotypic identification

A B
M

M 1 2 3 4 5

2000 bp

2000 bp
1000 bp 1000 bp
750 bp T e 750 bp
500 bp 500 bp
250 bp 250 bp

1

C
2 3 4 5 6 M 1 2 3 4 5
N e o ) Y

2000 bp

1000 bp

750 bp

500 bp

250 bp

4 HiEMBE
Fig. 4 Vector construction
1:: M, DL2000 DNA Maker; Al ~ A5, MeJAZ2.2 JEFI A 50E; B1 ~ B6, KIAFFIEHTS PCR; C1 ~ C5, FFYISSIIE
Note: M, DL2000 DNA Maker; A1-AS5, Cloning of MeJAZ2.2 gene; B1-B6, Escherichia coli colony PCR; C1-CS5, Enzyme digestion validation.

(pGADT7 %5 #+pGBKT7 25 8% ) . FF 1 B Tk i ¢
34 H6 BE 43 il s T — Bt (SD/-Lew/-Trp) F1 P ik
(SD/-Ade-His-Leu-Trp) [EfARE S5 3 I, WAL EEREA:
KRB o G5 2R WK, 76 DU Sk [ A5 57 5 b3 To s
BERVE AR, AR e [E A S 72 2 b Rk I A2
K, BB Bl RERR B B 135 MR (1 5) .
DL b SE6 45 BAER, MeJAZ2.2 45 1 AN BE B s
A, ANAELE B S TEME, RO AT R 5 e A

SD/-Trp-Leu
10!

10°

pGADT7+pGBKT7

pGADT7-MeJAZ2.2+pGBKT7

FI R AT 8 1 EAR I R

2.6 MeJAZ22 BENFEXEEZTAMIE $2H
ik pGADT7-MeJAZ2.2 5 A% SC124 () cDNA
SCPETR R BOR LA AL B A5 47 1Y AH109 [ EESZ
A, 205G T B (SD/-Leu/-Trp) AU ik
(SD/-Ade-His-Leu-Trp) Bl AR R #2 4E Fo —Hk-FAk
T RERETR R IE A, RO BORLEE A BT, 28 H DU ik
A PR P BH PR SR A AR, AL pGBKT7
SD/-Trp-Leu-His-Ade

102 103 10° 10" 102 103

Bl 5 pGADT7-MeJAZ2.2 Hi#iEWIE
Fig. 5 Verification of pGADT7-MeJAZ2.2 self-activation
FE: 100,107, 1072, 107 N EERF RO R AL SD/-Trp/-Leu Sy (%R (Trp) FI5E 2RR (Lew) BRI A B B J7 4%, SD/-Trp-Lou-His-Ade S (42 #R
(Trp). SEZRR(Leu) . 415 AR (His) FIRIENS (Ade) % BEBIIE RIEE IR IE .
Note: 10° 107, 107 and 107 represent the yeast cell dilution fold. SD/-Trp/-Leu is a tryptophan (Trp) and leucine (Leu) yeast defective medium; SD/-
Trp-Lcu-His-Ade is a Trp, Leu, histidine (His), and adenine (Ade) yeast defective medium.
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TR SCAE: MeJAZ2.2 HEDR B v B K AT o 1 0 45

23 J0l H 51 W e 4T PCR 974, B I R k4G ) 1)
3 R/ IANTRI A (18] 6) o

E 6 BEE® PCREIE

Fig. 6 PCR verification of yeast colonies
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Cloning and interaction protein screening of MeJAZ2.2 gene

Zhang Bowen®, Xu Haoran", Zeng Hongqiu’
(School of Tropical Agriculture and Forestry, Hainan University/ Hainan Key Laboratory of Biotechnology of
Salt Tolerant Crops, Danzhou, Hainan 571737, China)

Abstract: Cassava is an important food crop in tropical regions, but the yield of cassava is affected by salt stress, which endangers
food security. JAZ (jasmonate ZIM-domain) proteins, as essential components in the jasmonate signaling pathway, are involved in
regulating the tolerance to salt stress in a variety of crops. In order to investigate response of JAZ proteins in cassava to salt stress,
as well as the underlying regulatory mechanisms two homologous genes MeJAZ2.1 and MeJAZ2.2 were identified from cassava
variety SC124 through bioinformatics. The evolutionary tree and conserved domain analysis indicated that they both contain two
conserved domains, ZIM and Jas, which belong to the JAZ gene family. Further research discovered that the expression level of
MeJAZ2.2 changed more significantly in response to salt stress in cassava. MeJAZ2.2-silenced cassava plants were more
susceptibility to salt stress compared to the wild type, indicating that MeJAZ2.2 may positively regulate cassava resistance to salt
stress. The pGADT7-MeJAZ2.2 bait vector was constructed and no self-activating activity was found by yeast two-hybrid
experiment. Moreover, three candidate interacting proteins of MeJAZ2.2 were screened, including glutamine synthetase (GS),
ubiquitin 3 (Ub3), and FRIGIDA-LIKE PROTEIN (FRI-L), which provides a preliminary framework for analyzing the function
and molecular mechanism of JAZ proteins to salt stress in cassava.

Keywords: cassava; salt stress; MeJAZ2.2; interacting protein
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