文章编号:1674-7054(2021)04-0441-07

CrxV 对水稻白叶枯病菌致病力的调控

林玉暖1,2,候运郁1,米 多2,李春霞2,陶 均2

(1. 海南大学 生命科学与药学院; 2. 海南大学 热带作物学院, 海口 570228)

摘 要:为分析 GGDEF 和 EAL 结构域的蛋白 CrxV 对水稻黄单胞菌(Xanthomonas oryzaepv.oryzae, Xoo)致病性及相关致病因子的影响,通过同源重组法构建了 crxV 的突变体及其互补菌株;采用剪叶法比较了突变体、野生型和互补菌株对水稻叶片的侵染能力;分析了这 3 个菌株产生相关致病因子(运动性、胞外多糖、生物被膜和胞外酶)的能力。结果显示, crxV 突变体的致病力比野生型和互补菌株的低。crxV 突变导致病原菌生物被膜含量显著升高,但对运动性、胞外多糖和胞外酶均无明显影响。结果表明, CrxV 可能通过负调控生物被膜影响 Xoo 的致病性。

关键词: CrxV; C-di-GMP; 生物被膜; 致病性; 水稻白叶枯病菌

中图分类号: S 435.111.4⁺⁷ 文献标志码: A

引用格式:林玉暖,候运郁,米多,等.CrxV对水稻白叶枯病菌致病力的调控[J].热带生物学报,2021,12(4): 441-447.DOI:10.15886/j.cnki.rdswxb.2021.04.006

环二鸟苷酸(c-di-GMP)是细菌中普遍存在的第二信使分子,首次在葡糖酸醋酸杆菌中被发现,是纤 维素合酶的异构激活因子^[1-2]。其后的研究结果表明, c-di-GMP 参与调节各种生物过程如致病性、运动 性、生物被膜、胞外多糖及胞外酶等^[3-4]。胞内 c-di-GMP 水平受含有 GGDEF、EAL 或 HD-GYP 结构域 蛋白的调控: GGDEF 蛋白负责 c-di-GMP 合成, 而 EAL 或 HD-GYP 蛋白参与 c-di-GMP 的分解^[5]。 GGDEF 结构域含有约 180 个氨基酸残基,具有保守的 Gly-Gly-Asp-Glu- Phe 氨基酸残基序列⁶⁶。在新月 形杆菌(Caulobacter crescentus)中, GGDEF 结构域蛋白 PleD 具有双鸟苷酸环化酶活性, 调控细菌的运动 功能,促进细胞从运动转向静止^[7-9]。EAL 结构域长约 250 个氨基酸, Glu-Ala-Leu 序列高度保守,可调 挖细菌生物被膜的形成和运动性^[10]。有时 GGDEF 和 EAL 结构域共存于同一个蛋白中,可能只有其中 1个结构域有功能。例如,铜绿假单胞菌 BifA 含有 GGDEF 和 EAL 结构域,但其没有 c-di-GMP 合成却 有分解活性¹⁵。稻黄单胞菌水稻致病变种(Xanthomonas oryzae pv. oryzae, Xoo)是引起水稻白叶枯病的 病原菌¹¹¹,可对水稻造成严重的产量损失。C-di-GMP代谢相关蛋白同样参与 Xoo 致病力的调控,如: ① GGDEF 结构域蛋白 GdpX1 具有合成 c-di-GMP 的活性,调节 Xoo 的运动能力、胞外多糖的含量以及 致病力[12];② EAL 结构域蛋白 PXO 03877 具有降解 c-di-GMP 的活性,增强细菌的致病性、运动性、胞 外多糖合成以及生物被膜的形成能力[13];③GGDEF/EAL 结构域蛋白 PdeR 与组氨酸激酶 PdeK 组成双 组份系统,磷酸化的 PdeR 具有分解 c-di-GMP 的能力, pdeR 突变降低 Xoo 的致病性、胞外多糖及生物被 膜的含量,但对运动性和胞外酶无明显影响[14]。本研究分析了 Xoo 中另一个 GGDEF/EAL 结构域蛋白 CrxV 对运动性、生物被膜、胞外多糖以及胞外酶等毒力因子的调控作用,为进一步分析 c-di-GMP 在 Xoo 与水稻互作中的作用奠定基础。

1 材料与方法

1.1 材料 Xoo 野生型菌株 PXO99A、大肠杆菌 DH5a、基因敲除载体 pK18mobSacB、过表达载体菌株

pHM1等均由笔者所在的实验室保存;一般化学药品购自广州化学试剂公司;PCR试剂购自诺唯赞生物科技有限公司;内切酶和连接酶购自 NEB 生物科技有限公司;快速质粒小提试剂盒、琼脂凝胶 DNA 回收试剂盒等购自天根生物科技有限公司;IR24 水稻用于检测 Xoo 的致病力;用 SMART 软件(http://smart.embl-heidelberg.de/)分析蛋白保守结构域。

1.2 突变体与互补菌株的构建及其致病力分析 将 crxV 基因上下游各约 500 bp 的序列通过 PCR 扩 增、酶切(*Hind*III/*Xba*I 与 *Xba*I/*Eco*RI)回收后连接到自杀性载体 pK18*mobSacB*(*Hind*III/*Eco*RI 酶切),获 得敲除载体 pK-crxV,电击转化 PXO99^A 菌株,采用同源重组 2 次交换的方法构建突变体 ΔcrxV^[15-16]。利 用 PCR 方法扩增 crxV 基因片段,酶切(*Hind*III/*Eco*RI)回收后连接互补载体 pHM1(*Hind*III/*Eco*RI 酶切), 然后转化 ΔcrxV 获得互补菌株 C-ΔcrxV(引物序列见表 1)。为便于比较,野生型菌株和 ΔcrxV 也转入空 载体 pHM1。采用剪叶法检测致病力,将突变体菌株 ΔcrxV-pHM1、野生型菌株 PXO99^A-pHM1 和互补菌 株 C-ΔcrxV 接种至生长期为 60 d 的水稻叶片上,14 d 后统计水稻的发病情况。

表1 引物序列

	Tab. 1 Primers used in this study	
引物 Primer	序列 Sequences	用途 Usages
CrxVFF	GCA <u>CAAGCTT</u> TCGCAGTTCGTGCTGGCAGT	<i>crxV</i> deletion
CrxVFR	GCAC <u>TCTAGA</u> ATGCAGGCGCATCGACCTCA	
CrxVRF	GCAC <u>TCTAGA</u> TGCATGCGCCAACTCGGCAT	
CrxVRR	GCAC <u>AATTCC</u> AAGGCCTTCAAGAGCTACG	
CrxVhmF	TATGACCATGATTACGCC <u>AAGCTT</u> GATGCGCCTGCATACCCGCATC	$\Delta crxV$ complement
CrxVhmR	TGTAAAACGACGGCCAGT <u>GAATTC</u> ATCAACTGTGCCAGGAACTG	

注:"—"表示酶切位点

Note: restriction enzyme sites are underlined

1.3 胞外酶活性检测 参照文献 [17] 的方法检测胞外酶的活性,将突变体菌株 Δ*crxV*-pHM1、野生型菌 株 PXO99A-pHM1 和互补菌株 C-Δ*crxV* 置 28 ℃ 条件下液体培养 48 h 后,取 1 mL 培养物用 ddH₂O 洗 涤 2 遍,用 1 mL ddH₂O 重悬菌体。取 3 μL 重悬液分别接种至纤维素检测培养基、淀粉酶检测培养基和 蛋白酶检测培养基上,在 28 ℃ 条件下静置培养 5 d。PGA 培养基: 1 g·mL⁻¹ Tryptone、1 g·mL⁻¹ 葡萄糖、 0.1 g·mL⁻¹ L-谷氨酸钠、1.5% agar; 纤维素检测培养基为 PGA 培养基+0.5% 羧甲基纤维素; 淀粉酶检测培 养基为 PGA 培养基+0.1% 可溶性淀粉; 蛋白酶检测培养基为 PGA 培养基+2% 脱脂奶粉。纤维素酶活性 测定方法: 0.1% 刚果红染色 30 min,用 1mol·L⁻¹ 的 NaCl 溶液洗 2 次, 观察酶水解直径 (cm); 淀粉酶活性 测定方法: 1: 100 I₂/KI (0.08% mol·L⁻¹ I₂, 3.2 mol·L⁻¹ KI) 溶液染色 10 min, 观察酶水解直径(cm); 蛋白酶 活性测定方法: 直接在蛋白培养基上观察水解光圈(cm)。每个试验重复 3 次。

1.4 游动性检测 参照文献 [18] 的方法检测游动性。用牙签蘸取 1.3 节中的菌重悬液,垂直接种于含 0.25% 琼脂的游动性培养基(0.03%Tryptone, 0.03%Yeast-extract, 0.25%agar)底部,在 28 ℃ 条件下静置培 养 4 d,测量菌株在培养基表面游动的直径(cm)并统计。重复 3 次。

1.5 生物被膜及胞外多糖试验 参照文献 [19 - 20] 的方法检测生物被膜的形成及胞外多糖的产生。取 单克隆细菌在 PSA 中培养 48 h 后,取 2 mL 菌在 5 500 r·min⁻¹条件下离心 3 min,收集菌体,用 M210 培 养基(5 g·L⁻¹ 蔗糖; 8 g·L⁻¹ 酶水解酪素; 4 g·L⁻¹ Yeast-extract; 3 g·L⁻¹ K₂HPO₄; 0.3 g·L⁻¹ MgSO₄ · 7H₂O, pH7.0)洗涤 2 次,再加入 M210 重悬,把重悬液的 *OD*₆₀₀ 调至 0.5。生物被膜实验:取 2 mL 重悬液 (*OD*₆₀₀=0.5)接种至玻璃试管,在 28 ℃ 下静置培养 4 d,缓慢倒出玻璃试管底的培养基,用 H₂O 洗涤 3 遍, 0.1% 结晶紫染色液染色 30 min,再用 H₂O 洗涤 3 遍,加入 3 mL90% 乙醇溶解,在 *OD*₅₉₀ 下测吸光值。胞 外多糖实验:取 2 µL 重悬液(*OD*₆₀₀=0.5)接种至 PGA 培养基表面,在 28 ℃ 下静置培养 4 d,观察菌落表 面形态。试验重复 3 次。

2 结果与分析

2.1 CrxV保守结构域的预测结果 根据 SMART 预测结果, CrxV 含有 GGDEF、EAL、HAMP 结构域

(图 1)。GGDEF 和 EAL 可能参与 c-di-GMP 的合成与分解,而 HAMP 可能通过调控 CrxV 的二聚体化影 响 GGDEF 和 EAL 的活性,因此,CrxV 可能参与 c-di-GMP 的代谢,调控细菌对外界环境的响应能力。 2.2 crxV 突变体的成功构建 为了分析 crxV 的功能,本实验采用同源重组 2 次交换法构建了 crxV 的 缺失突变体(图 2)。结果显示: crxV 突变体基因组扩增产物约为 1 000 bp, 而野生型 PXO99^A 基因组扩增 片段比突变体长约 1 500 bp(与 crxV 基因大小一致),说明 crxV 突变体构建成功。

保守结构域预测采用 SMART (http://smart.emblheidelberg.de/); GGDEF: c-di-GMP 合成结构域; EAL: c-di-GMP 分解结构域; HAMP: CrxV 二聚化结构域。

Fig. 1 The conserved domains of CrxV

CrxV conserved domains, analyzed by SMART (http:// smart.embl-heidelberg.de/) with default parameters. GGDEF: The domain involved in c-di-GMP synthesis, EAL: The domain involved in c-di-GMP degradation, HAMP: The protein dimerization domain; Blue box: Transmembrane helix; Pink box: low complexity regions.

图 2 PCR 验证 crxV 突变体($\Delta crxV$)

M: DL2000 Marker; 1、2: Δ*crxV*; W: 野生型 PXO99^A; N: 阴性对照

Fig. 2 PCR confirmation of the crxV mutant

M: DL2000 Marker; lanes 1 and 2: $\Delta crxV$; W: wild-type PXO99^A; N: negative control.

2.3 *crxV* 突变与 Xoo 致病性的关系 为了分析基因对 Xoo 的致病性,本实验构建了 Δ*crxV* 的互补菌株 C-Δ*crxV*。致病性分析结果发现, Δ*crxV* 的病斑长度比野生型 PXO99^A 的病斑长度减短了 3 cm 左右, 互补 菌株的致病力与野生型基本一致(图 3)。说明 CrxV 是 Xoo 侵染所必需的。

图 3 PXO99^A-pHM1、ΔcrxV-pHM1和C-ΔcrxV的致病性分析

A:接种水稻 14 d 后,野生型菌株 PXO99^A-pHM1、突变体菌株 Δ*crxV*-pHM1 和互补菌株 C-Δ*crxV*的病斑特征, H₂O 为 空白对照。B:接种 14 d 后的水稻病斑长度/cm (*: P<0.05, **: P<0.01)。

Fig. 3 Virulence analysis of PXO99^A-pHM1, Δ*crxV*-pHM1 and C-Δ*crxV*

A: The lesions caused by PXO99^A-pHM1, $\Delta crxV$ -pHM1 and C- $\Delta crxV$ (H₂O: mock control). B: The lesion lengths (cm) of the infected IR24 leaves after 14 days' inoculation of the indicated *Xoo* strains (*: *P*<0.05, **: *P*<0.01, compared with PXO99^A-pHM1).

2.4 crxV突变与 Xoo 运动性的关系 运动性是 Xoo 的重要毒力因子之一,且受 c-di-GMP 调控^[21],为此 有必要分析 crxV突变是否影响 Xoo 的运动能力。PXO99^A-pHM1、ΔcrxV-pHM1 和 C-ΔcrxV 的游动能力 分析结果(图 4)表明,这 3 个菌株之间泳动能力没有显著差异,说明 CrxV 不调控 Xoo 的运动性。

2.5 *crxV*突变与 Xoo 生物被膜形成的关系 胞外多糖和生物被膜是 Xoo 的毒力因子,与细菌的致病性 密切相关^[14]。为分析胞外多糖的产生和生物被膜的形成,本实验将菌株接种至 PGA 固体培养基表面和 M210 液体培养基中,静置培养 4 d 后发现, PXO99^A-pHM1、Δ*crxV*-pHM1 和 C-Δ*crxV* 菌落表面无明显差 别,而 Δ*crxV*-pHM1 的生物被膜形成的量比 PXO99^A-pHM1 高出了 2 倍,回补菌株与野生型菌株的生物被 膜形成量接近一样(图 5),说明 CrxV 负调控 Xoo 生物被膜的形成,但可能不调控细菌胞外多糖的产生。

菌株 Strains

图 4 PXO99^A-pHM1、Δ*crxV*-pHM1 和 C-Δ*crxV*的 游动 能力

上图:细菌在平板上的游动表型;下图:游动直径的统计 分析。

Fig. 4 The swimming abilities of PXO99^A-pHM1, $\Delta crxV$ pHM1 and C- $\Delta crxV$

Up panel: swimming phenotypes of PXO99^A-pHM1, $\Delta crxV$ -pHM1 and C- $\Delta crxV$; Down panel: the diameters of swimming zones of the indicated strains. All the experiments were repeated triple times. Values are given as means \pm SD.

图 5 PXO99^A-pHM1、ΔcrxV-pHM1和C-ΔcrxV产生生物被 膜(A)及胞外多糖(B)的能力

A:液体静置培养4d后生物被膜含量分析。上图:气液 表面生物被膜的结晶紫染色;下图:生物膜含量的定量分析 (*: P<0.05)。B: PGA 固体培养基上菌落的生长情况及表 型特征。

Fig. 5 The biofilm (A) and extracellular polysaccharide (B) contents of PXO99^A-pHM1, $\Delta crxV$ -pHM1 and C- $\Delta crxV$

A: The biofilm contents of PXO99^A-pHM1, $\Delta crxV$ -pHM1 and C- $\Delta crxV$ 4 days after incubation (*: p<0.05). Up panel: the crystal violet staining biofilm synthesized in the liquid-gas interfaces; Down panel: the biofilm contents of the indicated strains (OD₅₉₀). All the experiments were repeated triple times. Values are given as means ± SD. *: P<0.05, compared withPXO99^A-pHM1. B: The colony phenotypes (4 days after incubation) of PXO99^A-pHM1, $\Delta crxV$ -pHM1 and C- $\Delta crxV$.

2.6 *crxV* 突变与 Xoo 胞外酶活性的关系 胞外酶通过 II 型分泌系统将毒力因子分泌至胞外,促进细菌 对寄主的致病力,胞外酶合成或分泌可能受 c-di-GMP 调控^[22-23]。如图 6 所示, PXO99^A-pHM1、Δ*crxV*-pHM1和 C-Δ*crxV* 菌株间的胞外纤维素酶、淀粉酶和蛋白酶活性均没有显著差别,说明 CrxV 不调控 Xoo 胞外酶的合成或分泌。

图 6 PXO99^A-pHM1、Δ*crxV*-pHM1和C-ΔcrxV胞外酶活性分析 A:蛋白酶活性; B:淀粉酶活性; C:纤维素酶活性。1: PXO99^A-pHM1; 2: Δ*crxV*-pHM1; 3: C-Δ*crxV*。 Fig. 6 The extracellular enzyme activities of PXO99^A-pHM1、Δ*crxV*-pHM1 and C-Δ*crxV*

A: protease activities; B: amylase activities; C: cellulase activities.1: PXO99^A-pHM1; 2: $\Delta crxV$ -pHM1; 3: C- $\Delta crxV$. All the experiments were repeated triple times with same results.

3 讨 论

C-di-GMP 分别由 GGDEF 结构域蛋白负责合成和 EAL/HD-GYP 结构域蛋白负责降解, 胞内受体通 过感知 c-di-GMP 水平调控细胞多个代谢途径, 影响细菌的生长及环境适应能力。通常低水平的 c-di-GMP 提高细菌的运动能力, 高水平的 c-di-GMP 则有利于生物被膜的形成, 调节细菌的致病能力^[4]。在 Xoo 中, GGEDF 结构域蛋白 GdpX1, 通过负调控胞外多糖的产生和运动性从而抑制 Xoo 的致病性^[12]。 EAL 结构域蛋白 PXO_03877 具有 c-di-GMP 水解酶活性, 正调控致病性、生物膜的形成和胞外多糖的产 生^[13]。PdeR 含有保守的 GGDEF 和 EAL 结构域, 作为响应调节因子与组氨酸激酶 PdeK 组成双组份系 统, 正调控 Xoo 致病性和胞外多糖的产生^[24]。同 PdeR 类似, CrxV 也含有保守的 GGDEF 和 EAL 结构 域, 但其具体工作还不清楚。由于致病性与 c-di-GMP 的含量可能成负相关^[13,24], crxV 突变导致 Xoo 致病 力降低, 因此 CrxV 可能作为 c-di-GMP 分解酶, 其 GGDEF 结构域可能没有酶活性。虽然研究发现 Xoo 中影响致病性的 c-di-GMP 代谢酶都可能调控诸如运动性、胞外多糖和胞外酶等毒力因子的合成或 分泌^[13,24], 但 crxV 突变并不影响这些因子的形成或分泌。有趣的是, crxV 突变导致 Xoo 生物被膜含量显 著增加。生物被膜形成和解聚是细菌致病重要的调节过程, 缺一不可。因此, CrxV 可能负调控生物被膜 的解聚, 进而正调控病原菌的致病力。以上结果虽然显示 CrxV 可能通过介导 c-di-GMP 代谢, 影响病原 菌生物被膜的含量, 调控病原菌的致病力, 但 CrxV 的酶活性及其在生物被膜形成与解聚中的作用还不清 楚, 尚需做进一步研究。

参考文献:

- [1] HEENGGE R. Principles of c-di-GMP signalling in bacteria [J]. Nature Reviews Microbiology, 2009, 7(4): 263 273.
- [2] ROSS P, WEINHOUSE H, ALONI Y, et al. Regulation of cellulose synthesis in Acetobacter xylinumby cyclic diguanylic acid [J]. Nature, 1987, 325(6101): 279 – 281.
- [3] HENGGE R. Novel tricks played by the second messenger c-di-GMP in bacterial biofilm formation [J]. The EMBO Journal, 2013, 32(3): 322 323.
- [4] JENAL U, REINDERS A, LORI C. Cyclic di-GMP: second messenger extraordinaire [J]. Nature Reviews Microbiology, 2017, 15(5): 271 – 284.
- [5] OCHSNER U A, WILDERMAN P J, VASIL A I, et al. GeneChip® expression analysis of the iron starvation response in *Pseudomonas aeruginosa*: identification of novel pyoverdine biosynthesis genes [J]. Molecular Microbiology, 2002, 45(5): 1277 – 1287.
- [6] KARAOLIS D. K, RASHID M H, CHYTHANYA R., et al. c-di-GMP (3'-5'-cyclic diguanylic acid) inhibits Staphylococcus aureus cell-cell interactions and biofilm formation [J]. Antimicrob Agents Chemother, 2005, 49(3): 1029 – 1038.
- [7] ALDRIDGE P, JENAL U. Cell cycle-dependent degradation of a flagellar motor component requires a novel-type response

regulator [J]. Molecular Microbiology, 1999, 32(2): 379-391.

- [8] HECHT G B, NEWTON A. Identification of a novel response regulator required for the swarmer-to-stalked-cell transition in *Caulobacter crescentus* [J]. Journal of Bacteriology, 1995, 177(21): 6223 – 6229.
- [9] SOMMER J M, NEWTON A. Turning off flagellum rotation requires the pleiotropic gene *pleD: pleA, pleC*, and *pleD* define two morphogenic pathways in *Caulobacter crescentus* [J]. Journal of Bacteriology, 1989, 171(1): 392 401.
- [10] DE SOUZA A A, IONESCU M, BACCARI C, et al. Phenotype overlap in *Xylellafastidiosa* Is controlled by the cyclic di-GMP Phosphodiesterase Eal in response to antibiotic exposure and diffusible signal factor-mediated cell-cell signaling [J]. Applied and Environmental Microbiology, 2013, 79(11): 3444 – 3454.
- [11] NINO-LIU D O, RONALD P C, BOGDANOVE A J. Xanthomonas oryzaepathovars: model pathogens of a model crop [J]. Molecular Plant Pathology, 2006, 7(5): 303 – 324.
- [12] YANG F, QIAN S, TIAN F, et al. The GGDEF-domain protein GdpX1 attenuates motility, exopolysaccharide production and virulence in *Xanthomonas oryzae* [J]. Journal of Applied Microbiology, 2016, 120(6): 1646 – 1657.
- [13] XUE D, TIAN F, YANG F, et al. Phosphodiesterase EdpX1 Promotes *Xanthomonas oryzae*pv. *oryzae*virulence, exopolysaccharide production, and biofilm formation [J]. Applied and Environmental Microbiology, 2018, 84(22): e01717 – 18.
- [14] YANG F, TIAN F, SUN L, et al. A novel two-component system PdeK/PdeR regulates c-di-GMP turnover and virulence of *Xanthomonas oryzae*pv. oryzae [J]. Molecular Plant-Microbe Interactions, 2012, 25(10): 1361 – 1369.
- [15] LL Y R, ZOU H S, CHE Y Z, et al. A novel regulatory role of hrpD6 in regulating hrp-hrc-hpagenes in Xanthomonas oryzaepv. oryzicola [J]. Molecular Plant-Microbe Interactions, 2011, 24(9): 1086 – 1101.
- [16] SCHAFER A, TAUCH A, JAGER W, et al. Small mobilizable multi-purpose cloning vectors derived from the *Escherichia coli* plasmids pK18 and pK19: selection of defined deletions in the chromosome of *Corynebacterium glutamicum* [J]. Gene, 1994, 145(1): 69 73.
- [17] ZHU PL., ZHAO S, TANG J L, et al. ThersmA-like gene rsmA_{Xoo} of Xanthomonasoryzaepv. oryzaeregulates bacterial virulence and production of diffusible signal factor [J]. Molecular Plant Pathology, 2011, 12(3): 227 237.
- [18] DILUZIO W R, TURNER L, MAYER M, et al. *Escherichia coli* swim on the right-hand side [J]. Nature, 2005, 435(7046): 1271 – 1274.
- [19] YU C, CHEN H, TIAN F, et al. A ten gene-containing genomic island determines flagellin glycosylation: implication for its regulatory role in motility and virulence of *Xanthomonas oryzae* pv. *oryzae* [J]. Molecular Plant Pathology, 2018, 19(3): 579 – 592.
- [20] TANG J L, LIU Y N, BARBER C E, et al. Genetic and molecular analysis of a cluster of *rpf*genes involved in positive regulation of synthesis of extracellular enzymes and polysaccharide in *Xanthomonas campestris* pathovar *campestris* [J]. MGG Molecular & General Genetics, 1991, 226(3): 409 417.
- [21] TIAN F, YU C, LI H, et al. Alternative sigma factor RpoN2 is required for flagellar motility and full virulence of *Xanthomo-nas oryzae*pv. *oryzae* [J]. Microbiological Research, 2015, 170: 177 183.
- [22] BÜTNER D, BONAS U. Regulation and secretion of *Xanthomonas* virulence factors [J]. FEMS Microbiology Reviews, 2010, 34(2): 107 – 133.
- [23] JHA G, RAJESHWARI R, SONTI R V. Bacterial type two secretion system secreted proteins: Double-edged swords for plant pathogens[J]. Molecular Plant-Microbe Interactions, 2005, 18 (9): 891-898.
- [24] LI H, XUE D, TIAN F, et al. Xanthomonas oryzaepv. oryzae response regulator triP regulates virulence and exopolysaccharide production via interacting with c-di-GMP phosphodiesterase pdeR [J]. Molecular Plant-Microbe Interactions, 2019, 32(6): 729 – 739.

CrxV Regulates the Virulence of Xanthomonas oryzae pv. oryzae

LIN Yunuan^{1,2}, HOU Yunyu¹, MI Duo², LI Chunxia², TAO Jun²

(1. School of Life and Pharmaceutical Sciences, Hainan University; 2. College of Tropical Crops, Hainan University, Haikou, Hainan 570228, China)

Abstract: Proteins containing GGDEF and EAL domains are involved in the synthesis and degradation of the cell's second messenger c-di-GMP. They are important regulators for bacteria to respond to the external environment, and may be involved in the interaction between pathogen and host. We analyzed the effect of CrxV containing a GGDEF and an EAL domain on the virulence and some related virulent factors of *Xanthomonas oryzae* pv. *oryzae* (*Xoo*), a causal agent of bacterial leaf blight of rice. We used the homology recombination method to construct *crxV* mutant ($\Delta crxV$), and then the leaf clipping method to analyze the infection ability of the wild-type strain, $\Delta crxV$, and its complementary strain (C- $\Delta crxV$) on rice leaves. We also compared the motility, the contents of biofilm, extracellular polysaccharides and extracellular enzymes of these strains. The results showed that the $\Delta crxV$ mutant had lower virulence than the wild-type and complementary strains, the $\Delta crxV$ mutant difference was observed in its motility, extracellular polysaccharides and extracellular enzymes. These results demonstrate that the CrxV may positively regulate the virulence of *Xoo* through negative regulation of biofilm formation.

Keywords: CrxV; C-di-GMP; biofilm; virulence; Xanthomonas oryzae pv. oryzae

(责任编委:缪卫国 责任编辑:叶静)