文章编号:1674-7054(2020)02-0138-07

# 盐胁迫下拟南芥 SCAMP 基因克隆和 表达的生物信息学分析

白雪杨<sup>1</sup>,陈秀珍<sup>1</sup>,黄天帆<sup>1</sup>,江行玉<sup>1</sup>,周 扬<sup>2</sup> (1.海南大学热带作物学院/海南省耐盐作物生物技术重点实验室,海口 570228; 2.海南大学园艺学院,海口 570228)

摘 要: 为探究分泌载体膜蛋白(Secretory carrier membrane protein, SCAMP)的功能,采用 PCR 方法从模式 植物拟南芥中克隆到 5 个 SCAMP 基因,进行生物信息学分析,并通过实时荧光定量 PCR 技术分析 5 个 SCAMP 基因在盐胁迫下的表达模式。结果显示,拟南芥 SCAMP 蛋白的相对分子量为 30.1~33.2 kDa,等电点 为 6.60~9.18,属于不稳定性疏水蛋白,二级蛋白结构中主要包含 4 种构象: α-螺旋(Alpha helix, Hh)、无规则 卷曲(Randon coil, Cc)、直链延伸(Extended strand, Ee)和 β-折叠(Beta turn, Tt),其中以 α-螺旋为主,包含 4 个跨膜结构域,N 端和 C 端均在细胞膜内。实时荧光定量 PCR 结果表明, AtSCAMPs 的表达量均受盐胁迫 诱导上调表达, AtSCAMP1, AtSCAMP3, AtSCAMP4, AtSCAMP5 基因在叶中的表达明显高于根,且 AtSCAMP4 和 AtSCAMP5 在叶中受盐胁迫变化最明显。 关键词: 盐胁迫; 拟南芥; 分泌载体膜蛋白; 基因克隆; 表达分析; 生物信息学

中图分类号: Q 785;Q 786 文献标志码: A DOI: 10.15886/j.cnki.rdswxb.2020.02.003

植物在生长过程中会受到生物胁迫与非生物胁迫的影响。盐碱胁迫是非生物胁迫的一种,不但制约 植物生长,同时也严重影响土地的利用。土壤的盐碱化是一个全球性的环境问题,据联合国教科文组织 和粮农组织的不完全统计,世界上盐碱地已达到约9.5×10° hm²,相当于全球陆地总面积的7.23%,并且人 类活动不断占用土地导致耕地面积逐渐减少,土壤盐碱化的程度正在逐年增加。中国是一个农业大国, 盐碱地分布广泛,总面积约有9.9×10<sup>7</sup> hm<sup>2</sup>,土壤的盐碱化问题非常严峻<sup>[1]</sup>。土壤中可溶性盐分含量过高会 对植物造成盐害,大部分植物在含盐量达 0.3% 的土壤中会受到伤害[2]。盐胁迫对植物造成的伤害主要有 渗透胁迫、质膜伤害、离子平衡失调以及代谢紊乱<sup>33</sup>。在面对盐胁迫时,植物会采取一些相应的应答机制 以减少对自身的危害,植物的应答机制是将细胞质内过多的 Na<sup>+</sup>排出细胞外或将细胞质内的 Na<sup>+</sup>区隔到 液泡中来维持细胞质内正常的 Na<sup>+</sup>浓度<sup>[4]</sup>。质膜上的 Na<sup>+</sup>/H<sup>+</sup>逆转运蛋白 SOS1(salt overly sensitive 1) 将 Na<sup>+</sup>排出细胞,即SOS途径;而液泡膜上的Na<sup>+</sup>/H<sup>+</sup>逆转运蛋白NHX将Na<sup>+</sup>区隔到液泡中,即NHX途 径<sup>[5]</sup>。植物利用 PM-ATPase 或 V-ATPase 和 V-PPase 所产生的跨膜 H<sup>+</sup>浓度梯度,将细胞质中的 Na<sup>+</sup>排到 细胞外部或将其隔离到液泡中,从而调节细胞内 Na<sup>+</sup>的浓度,调节细胞质的酸碱值及维持细胞内离子的稳 态<sup>[6]</sup>。在植物中, Na<sup>+</sup>区隔化是植物抵抗盐碱的重要过程, 主要依赖于液泡膜上的 Na<sup>+</sup>/H<sup>+</sup>逆向转运蛋白, 同 时液泡膜上的 H\*-ATPases 和 PPases 水解 ATP 释放的能量将 H\*泵出膜外,产生跨膜的电化学梯度,进而 驱动 Na<sup>+</sup>的逆向转运<sup>(7)</sup>。超表达液泡膜上 Na<sup>+</sup>/H<sup>+</sup>逆向转运蛋白基因 AtNHXI 的拟南芥耐盐性得到明显提 高<sup>[8]</sup>。将拟南芥 AtNHXI 基因转入棉花后,转基因植株能够在高浓度 NaCl 条件下正常生长<sup>[9]</sup>。将绿豆

收稿日期: 2020-02-19 修回日期: 2020-02-23

**基金项目:**国家重点研发计划(2018YFE0207203-2);国家自然科学基金(31660253);海南大学科研团队项目 (hdkytg201706);海南大学科研启动项目(KYQD(ZR)1845)

第一作者: 白雪杨(1989-), 女, 海南大学热带作物学院 2017 级硕士研究生. E-mail: abbybai2020@163.com

<sup>·</sup>通信作者:周扬(1988-),男,博士,讲师.研究方向:植物抗逆分子生物学. E-mail: zhouyang@hainanu.edu.cn

VrNHXI 基因导入拟南芥,转基因拟南芥的耐盐性显著提高[10]。在番茄中超表达 AtNHXI 基因,可以促进 番茄细胞在盐胁迫下 K+从地下部向地上部运输,提高液泡中 K+含量,使 K+/Na+提高,减轻 Na+毒害[11]。 Paulo 等用酵母双杂交的方法从人脑 cDNA 文库中找到 NHE7 的互作用蛋白, 又用免疫共定位/沉淀的方 法确定了其与 SCAMP2 可以相互作用<sup>[12]</sup>。GRAHAM 等论证了哺乳动物中 NHE5 可以与 SCAMP2 相互 作用<sup>[13]</sup>。之后在小麦中 TaSCAMP1 被证实可以与液泡膜的 Na<sup>+</sup>/H<sup>+</sup>逆向转运蛋白发生相互作用,并被推 测与植物耐盐相关<sup>[14]</sup>,而在拟南芥中,利用 BiFC 实验和泛素酵母双杂实验证明 AtSCAMP3 可以与 AtNHX2 互作[15]。以上研究结果表明细胞中 Na<sup>+</sup>/H<sup>+</sup>逆向转运蛋白的功能受到分泌载体膜蛋白 SCAMP 的 调控。分泌载体膜蛋白(Secretory carrier membrane protein, SCAMP)是生物体内一种非常重要的膜蛋白, 存在于许多真核生物中[16]。哺乳动物有 5 个 SCAMP 基因 SCAMP1-SCAMP5, 研究证明, 哺乳动物中的 SCAMP 基因与神经递质的传递有关系,且涉及神经递质信号传递中膜的去极化和突触前膜分泌突触小 泡或密集核心小泡(DCV)<sup>[17-18]</sup>。SCAMP3 控制着晚期质体腔内囊泡的形成和多囊泡质体以及溶酶的分 化<sup>[19]</sup>,还在调节早期内体形成中起到重要作用<sup>[20]</sup>。植物 SCAMP 定位在根和花粉管等部分的质膜、初级 质体或者反面高尔基体中<sup>[21]</sup>。为探究分泌载体膜蛋白(Secretory carrier membrane protein, SCAMP)的功 能,笔者采用 PCR 技术,从模式植物拟南芥中克隆出了 5个 SCAMP 基因,利用生物信息学技术对拟南 芥 AtSCAMP 蛋白家族结构进行了预测,并利用荧光定量 PCR 技术研究了它们在盐胁迫下的表达模式, 旨在为进一步研究和完善植物的耐盐机理提供参考。

#### 1 材料与方法

1.1 实验材料 植物材料为哥伦比亚型拟南芥 (Col-0),由本实验室保存。取野生型拟南芥种子清洗后 用水浸泡,遮光放于 4 ℃ 冰箱中 3 d,然后把种子播种到 1/2 MS 固体培养基上,竖直培养 10 d 后,移栽幼 苗至含有 50 mmol·L<sup>-1</sup> NaCl 的 1/2 MS 培养基上盐胁迫培养,于盐胁迫培养 0,1,3,5,7,9,11,13 h 时分别 取幼苗的根和叶,并立即放入液氮中速冻,-80 ℃ 保存以备提取 RNA。

**1.2 拟南芥 RNA 的提取和 cDNA 反转录** 依据说明书,使用植物总 RNA 提取试剂盒(RNAplant Plus Reagent, DP437; TIANGEN 公司生产)提取 RNA;采用 TransScript One-Step gDNA Removal 和 cDNA Synthesis SuperMix 进行 RNA 反转录(TaKaRa, R047A)。将样品用手拨打轻轻混匀后 42 ℃ 反应 15 min; 85 ℃ 反应 5 s; 4 ℃ 保存。获得的 cDNA 用 *Actin*<sup>[22]</sup> 引物扩增,以检测 cDNA 的质量。

1.3 *AtSCAMP* 基因的克隆 根据拟南芥基因组网站 (www.arabidopsis.org) 上公布的 *AtSCAMP* 基因序列 [*AtSCAMP1*(基因登录号: AT1G61250), *AtSCAMP2*(基因登录号: AT1G11180), *AtSCAMP3*(基因登录号: AT2G20840), *AtSCAMP4*(基因登录号: AT1G03550), *AtSCAMP5*(基因登录号: AT1G32050)] 设计全长引物。引物序列为: *AtSCAMP1*-F: ATGGCTAATCGTTATGATCC, *AtSCAMP1*-R: TCAAACAGCGGCTC TCAAG; *AtSCAMP2*-F: ATGGGTGGTCGTTACGAT, *AtSCAMP2*-R: TCATATGGCAGCTCTCATG; *AtSCAMP3*-F: ATGTCTCGCTACCAGTCTC, *AtSCAMP3*-R: TCAGAGAGCTGCCATCATT; *AtSCAMP4*-F: ATGGCACGACACGATCCT, *AtSCAMP4*-R: TCATAGTGCACGCATCAAGGT; *AtSCAMP5*-F: ATGAA TCGCCACCACGATCCT, *AtSCAMP4*-R: TCATAGTGCACGCATCAAGGT; *AtSCAMP5*-F: ATGAA TCGCCACCACGATC, *AtSCAMP5*-R: TCACTTGTTTCCCCTAAAGTAG。将 1.2 中得到的 cDNA 混合作为模板进行扩增。将片段进行胶回收后连接 T 载体,转化大肠杆菌后选取菌落 PCR 正确的样品进行测序。 1.4 生物信息学分析 采用 Protparam 在线软件(http://www.expasy.org/tools/protparam.html)分析 SCAMP 蛋白即七级结构。采用 TMHMM 在线软件(http://www.cbs.dtu.dk/services/TMHMM-2.0/)预测 SCAMP 蛋白的声频结构。采用 MEGA7.0 软件对 SCAMP 蛋白做进化树分析。

1.5 实时荧光定量 PCR 利用 oligo7 软件设计 *AtSCAMP* 基因的荧光定量 PCR 引物(表 1)。以 *Actin* 作 为内标基因进行荧光定量 PCR 分析。采用染料法实时荧光定量 PCR 试剂盒(TaKaRa, SYBR Premix EX Taq<sup>™</sup>(Perfect Real time), R820A)进行试验,反应体系按照说明书进行。实时荧光定量 PCR 的扩增条件

表1 实时荧光定量 PCR 引物

|               | Tab. 1Primer sequence for real-time quant | ntitative PCR             |  |  |  |
|---------------|-------------------------------------------|---------------------------|--|--|--|
| 名称Primer      | 引物序列Primer sequence                       |                           |  |  |  |
| Actin         | F: TATGAATTACCCGATGGGCAAG                 | R:TGGAACAAGACTTCTGGGCAT   |  |  |  |
| AtSCAMP1-qPCR | F: TCGACCACTCTACCGTGCCTTC                 | R: TCGCTGCTTCCCGTCTCATTTG |  |  |  |
| AtSCAMP2-qPCR | F: CTTTGCCTCCCGAACCTGCTG                  | R: CCAAGCGGTAGTAACGGCGATG |  |  |  |
| AtSCAMP3-qPCR | F: TTGCGGCGGTGGCTCCTC                     | R: GCCTCCTGCTTCATCTCTGCTG |  |  |  |
| AtSCAMP4-qPCR | F: ACGTGTTCCACATCGCGTTCTG                 | R: TGCCACTCCCTCGGAAGTATGC |  |  |  |
| AtSCAMP5-qPCR | F: GCTTGCTGACTGGGAAGCTGAG                 | R: TCCTCATGGCTCGGTAGAGTGG |  |  |  |

为 94 ℃ 预变性 30 s, 94 ℃ 变性 5 s, 60 ℃ 退火 30 s, 40 个循环, 结束后读取荧光信号: 95 ℃, 15 s; 60 ℃, 15 s; 95 ℃, 15 s。采用比较 CT 法计算目的基因的相对表达量,目的基因的相对表达量=2<sup>-ΔΔCt</sup>,其中 ΔΔ*Ct*=(*Ct*<sub>目的基因</sub>-*Ct*<sub>内参基因</sub>)<sub>实验组</sub>-(*Ct*<sub>目的基因</sub>-*Ct*<sub>内参基因</sub>)<sub>对照组</sub>。进行 3 次生物学重复,取平均值进行作图。

### 2 结果与分析

2.1 RNA 提取及 cDNA 反转录 提取的 RNA 用 1% 的琼脂糖检测(图 1A),从图 1A 可见,叶片中的 RNA 的 28S 和 18S 完整,说明 RNA 质量比较好。用反转录试剂盒进行 cDNA 反转录,得到的 cDNA 用 内参基因 *Actin* 引物进行扩增(图 1B),从图 1B 可见,产物没有非特异性扩增或者引物二聚体,表明反转 录得到的 cDNA 质量较好。



图 1 拟南芥叶片中的 RNA 及 cDNA 扩增

A: 50 mmol·L<sup>-1</sup> NaCl 处理叶片中的 RNA; 1~8: 0, 1, 3, 5, 7, 9, 11, 13 h 叶中 RNA。B: 内标基因 Actin 检测 cDNA 的扩 增结果; M: 2 000 marker plus; 1~8: 0, 1, 3, 5, 7, 9, 11, 13 h cDNA 扩增结果。

Fig. 1 RNA and cDNA amplification of Arabidopsis thaliana leaves

A: RNA from *A. thaliana* leaves under 50 mmol.  $L^{-1}$  NaCl treatment; 1–8: RNA from leaves under 50 mM NaCl treatment at different hours (0, 1, 3, 5, 7, 9, 11,13 h). B: PCR amplification of *Actin* from leaf cDNA; M: 2 000 marker plus; 1–8: PCR product of cDNA under 50 mM NaCl at different hours (0, 1, 3, 5, 7, 9, 11,13 h).

2.2 AtSCAMP 家族基因的克隆 在拟南芥基因组 网站 (www.arabidopsis.org) 上查找公布的 AtSCAMP 基因序列设计引物, 扩增得到长度为 750~1 000 bp 之间的片段(图 2)。测序结果表明得到的目的片段 分别为 870, 894, 849, 852, 795 bp, 与 AtSCAMP1-5 序列比对正确, 基因克隆成功。

2.3 拟南芥 SCAMP 的生物信息学分析 AtSCAMP1-5 蛋白的氨基酸组成见表 2,用 Protparam 在线软件 分析 AtSCAMP1-5 蛋白的理化性质。预测结果: AtSCAMP1-5 蛋白质相对分子量分别约为 32.6, 33.2, 32, 31.9, 30.1 kDa; AtSCAMP1-5 蛋白质等电



图 2 AtSCAMP 基因扩增 M: DL2000 marker; 1 ~ 5: AtSCAMP1-5 基因的扩增产物 Fig. 2 Amplification of AtSCAMP genes M: DL2000 marker; 1-5: PCR products of AtSCAMP1-5

表 2 拟南芥 SCAMP 蛋白氨基酸组成

| <br> | _ | _ | _ |
|------|---|---|---|
|      |   |   |   |

| Tab. 2     Amino acid composition of SCAMP proteins in Arabidopsis thaliana |         |         |         |         |         |         | %       |         |         |         |
|-----------------------------------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| SCAMP                                                                       | Ala(A)  | Arg (R) | Asn (N) | Asp (D) | Cys (C) | Gln (Q) | Glu (E) | Gly (G) | His (H) | Ile (I) |
| AtSCAMP1                                                                    | 11.4    | 6.20    | 2.80    | 3.80    | 1.00    | 3.50    | 5.50    | 6.90    | 1.40    | 6.90    |
| AtSCAMP2                                                                    | 11.4    | 2.80    | 3.70    | 5.10    | 1.00    | 3.40    | 3.70    | 8.40    | 1.00    | 7.10    |
| AtSCAMP3                                                                    | 9.6     | 3.80    | 2.10    | 3.50    | 1.10    | 2.80    | 6.00    | 6.40    | 1.80    | 9.60    |
| AtSCAMP4                                                                    | 10.6    | 1.00    | 3.90    | 3.20    | 1.10    | 2.50    | 6.70    | 6.40    | 2.10    | 7.80    |
| AtSCAMP5                                                                    | 8.3     | 3.50    | 3.00    | 5.70    | 1.90    | 2.70    | 4.20    | 6.80    | 2.70    | 9.50    |
| SCAMP                                                                       | Leu (L) | Lys (K) | Met (M) | Phe (F) | Pro (P) | Ser (S) | Thr (T) | Trp (W) | Tyr (Y) | Val (V) |
| AtSCAMP1                                                                    | 9.30    | 4.50    | 1.40    | 7.60    | 6.60    | 3.50    | 2.80    | 2.40    | 4.20    | 8.30    |
| AtSCAMP2                                                                    | 10.80   | 4.00    | 1.70    | 7.40    | 5.40    | 4.40    | 2.70    | 2.00    | 4.00    | 6.10    |
| AtSCAMP3                                                                    | 8.20    | 5.70    | 3.20    | 7.40    | 6.40    | 5.70    | 3.90    | 2.50    | 3.90    | 5.70    |
| AtSCAMP4                                                                    | 9.90    | 4.90    | 1.80    | 7.10    | 7.10    | 3.20    | 5.30    | 2.10    | 3.90    | 6.00    |
| AtSCAMP5                                                                    | 10.20   | 6.10    | 1.90    | 8.00    | 5.30    | 4.90    | 2.30    | 2.70    | 3.80    | 6.10    |

点(pI)分别是 8.87, 9.18, 8.32, 6.60, 7.66; AtSCAMP1-5 蛋白质元素组成分别是 C<sub>1526</sub>H<sub>2321</sub>N<sub>389</sub>O<sub>392</sub>S<sub>7</sub>, C<sub>1536</sub>H<sub>2354</sub>N<sub>402</sub>O<sub>404</sub>S<sub>8</sub>, C<sub>1491</sub>H<sub>2274</sub>N<sub>368</sub>O<sub>389</sub>S<sub>12</sub>, C<sub>1485</sub>H<sub>2264</sub>N<sub>372</sub>O<sub>393</sub>S<sub>8</sub>, C<sub>1409</sub>H<sub>2135</sub>N<sub>349</sub>O<sub>361</sub>S<sub>10</sub>; AtSCAMP1-5 蛋白质亲水性分别是 0.185, 0.162, 0.179, 0.120, 0.233, 属于疏水蛋白, 不稳定指数均大于 40, 表明它们均为不稳定蛋白。

用 SOPMA 在线软件对 AtSCAMP 家族蛋白二级结构进行预测,分析发现,AtSCAMP 蛋白家族二级 结构中都包含有 4 种构象:  $\alpha$ -螺旋(Alpha helix, Hh),  $\beta$ -折叠(Beta turn, Tt),直链延伸(Extended strand, Ee),无规则卷曲(Randon coil, Cc),其中含量最高的是  $\alpha$ -螺旋(Hh),约占蛋白质二级结构总量 44% ~ 50%,含量第 2 的是无规则卷曲(Cc),约占总量 32% ~ 36%,含量第 3 的是直链延伸(Ee),约占 11% ~ 16%,含量最少的蛋白二级结构是  $\beta$ -折叠(Tt),含量约为 4% ~ 6%(表 3)。

|           | Tab. 5 Contents of secon | luary structures of Arse | AMF proteins in Arabidops | is inaliana 70 |
|-----------|--------------------------|--------------------------|---------------------------|----------------|
| AtSCAMP   | α-螺旋(Hh)                 | <i>β</i> -折叠(Tt)         | 直链延伸(Ee)                  | 无规则卷曲(Cc)      |
| AtSCAMP 1 | 49.48                    | 5.88                     | 11.76                     | 32.87          |
| AtSCAMP 2 | 45.79                    | 5.72                     | 13.47                     | 35.02          |
| AtSCAMP 3 | 48.94                    | 6.03                     | 15.25                     | 29.79          |
| AtSCAMP 4 | 47.00                    | 3.89                     | 14.49                     | 34.63          |
| AtSCAMP 5 | 44.70                    | 4.55                     | 14.77                     | 35.98          |

表 3 拟南芥 AtSCAMP 蛋白家族二级结构含量

通过 TMHMM 在线软件对 AtSCAMP 蛋白家族进行跨膜结构域的预测,结果(图 3)表明, AtSCAMP1-5 蛋白均具有 4 个跨膜结构域,N 端和C 端均在细胞膜内。

通过 MEGA7.0 软件对 AtSCAMP 蛋白家族进行序列比对,结果(图 4)可见, AtSCAMP1 与 AtSCAMP2 蛋白在进化关系上比较近, AtSCAMP3 与 AtSCAMP4 蛋白在进化关系上较近,而 AtSCAMP5 蛋白与其他蛋白进化关系最远。

**2.4** *AtSCAMP* 基因在盐胁迫下的表达分析 使用 qRT-PCR 方法研究 *AtSCAMP* 基因在 50 mmol·L<sup>-1</sup> NaCl 胁迫下的表达情况。结果(图 5)表明,在 50 mmol·L<sup>-1</sup> NaCl 胁迫下, *AtSCAMP1-5* 基因在拟南芥的根、叶中都呈上调表达,其中 *AtSCAMP1*, *AtSCAMP3*, *AtSCAMP4*, *AtSCAMP5* 基因在叶中的表达明显高于根中。*AtSCAMP1* 在叶中初期表达量随时间升高而升高, 3 h 达到第 1 个峰值,约为起始表达量的 9 倍,

0/





此后表达量下降,在盐胁迫诱导9h后表达量又逐 渐上升;而根中AtSCAMP1基因的表达量没有明显 的变化(图 5A)。AtSCAMP2在叶中表达量高于 根,初期随处理时间增加而增加,相对于其他 AtSCAMP基因,AtSCAMP2在根和叶中的表达量受 盐胁迫的变化都不太明显(图 5B)。AtSCAMP3在 根和叶中受盐胁迫诱导表达的模式与AtSCAMP1 比较类似(图 5C)。叶中AtSCAMP4和AtSCAMP5 基因受盐胁迫诱导变化明显,盐胁迫处理后表达量



#### 图 4 拟南芥 SCAMP 蛋白的进化树分析







迅速上升, 而根中这 2 个基因在 50 mmol·L<sup>-1</sup> NaCl 处理后的表达量变化都不明显(图 5D-E)。

## 3 讨 论

研究植物的耐盐机制有助于培育耐盐植物新品种,提高盐碱地中植物的产量,合理利用盐碱地。 SCAMP蛋白被证实是一种分泌载体膜蛋白质,不论在哺乳动物中还是植物中都被证明可以与 Na<sup>+</sup>/H<sup>+</sup>转运蛋白进行互作,且生化分析显示 NHE7 的 C 端和 SCAMP 第 2 个、第 3 个跨膜结构域中的细胞质环优 先结合, SCAMP2 中缺少这一段的蛋白与 NHE7 的结合明显减弱<sup>[12-13]</sup>。笔者发现, AtSCAMP 蛋白具有 4 个跨膜结构域,其 N 端和 C 端均在膜内,为此推测其定位在膜上,说明它们与细胞膜上的 Na<sup>+</sup>/H<sup>+</sup>逆向转 运蛋白互作是有可能的。已有研究<sup>[23-27]</sup>表明,植物体内液泡膜上的 Na<sup>+</sup>/H<sup>+</sup>逆向转运蛋白 (NHX) 和细胞 质膜上的 Na<sup>+</sup>/H<sup>+</sup>逆向转运蛋白 (SOS1)都在植物耐盐机制中发挥着重要的作用。小麦 SCAMP 基因转化 到拟南芥和水稻中能够明显提高转基因拟南芥和水稻的耐盐抗性<sup>[15]</sup>。笔者发现从拟南芥中克隆的 5 个 SCAMP 基因均在受到盐胁迫诱导后上调表达(图 5),由此推测 SCAMP 基因与植物耐盐性相关。

有研究<sup>[3]</sup> 表明 SCAMP3 在调节早期内体形成中起到重要作用。笔者通过对盐胁迫下 SCAMP 基因 表达量具体分析发现,在盐胁迫初期时, SCAMP1-5 基因都呈现上升趋势, 与该结果相似; 实时荧光定量 PCR 结果还显示在盐胁迫下 SCAMP 基因表达量在开始上升后都存在 1 次下降趋势, 由此推测 SCAMP 可能在应对盐胁迫时并没有单独发挥作用, 而是可能与其他蛋白互作。文献 [15] 也发现在拟南芥中 AtSCAMP3 可以与 AtNHX2 互作。文献 [14] 也发现在小麦中 TaSCAMP1 可以与 Na<sup>+</sup>/H<sup>+</sup>逆向转运蛋白产 生荧光发生相互作用, 且表达量在盐处理时升高。这些结果都说明, AtSCAMP 可能参与了植物的耐盐调 控途径。本研究克隆得到的 AtSCAMP1-5 基因均已构建到植物表达载体和酵母表达载体中, 本实验室下 一步将深入研究这些基因的功能。

## 参考文献:

- [1] 胡举伟, 张会慧, 孙广玉. Na<sub>2</sub>CO<sub>3</sub> 胁迫对青龙桑、蒙古桑叶片生理和叶片光系统 Ⅱ 活力的影响[J]. 中南林业科技大学 学报, 2015, 35(5): 51 58.
- [2] 王培培, 宋萍, 张群. 磷脂酶 D 信号转导与植物耐盐研究进展[J]. 生物技术通报, 2016, 32(10): 58-65.
- [3] 陈永快, 王涛, 廖水兰, 等. 逆境及生长调节剂对作物抗逆性的影响综述[J]. 江苏农业科学, 2019, 47(23): 68 72.
- [4] KRONZUCKER H J, BRITTO D T. Sodium transport in plants: a critical review [J]. New Phytologist, 2011, 189(1): 54 81.
- [5] 周扬, 胡艳平, 杨成龙, 等. 盐生植物海马齿 SpCBL10 基因的克隆及结构预测[J]. 分子植物育种, 2014, 12(4): 765 771.
- [6] 毛桂莲, 许兴, 徐兆桢. 植物耐盐生理生化研究进展[J]. 中国生态农业学报, 2004, 12(1): 48-51.
- [7] DEINLEIN U, AARON B, STEPHAN, et al. Plant salt-tolerance mechanisms [J]. Trends in Plant Science, 2014, 19(6): 371-379.
- [8] GAXIOLA R, RAO R, SHERMAN A, et al. The Arabidopsis thaliana proton transporters, AtNhx1 and Avp1, can function in cation detoxification in yeast [J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(4): 1480 1485.
- [9] HE C, YAN J, ZHANG H, et al. Expression of an *Arabidopsis* vacuolar sodium/proton antiporter gene in cotton improves photosynthetic performance under salt conditions and increases fiber yield in the field [J]. Plant Cell Physiology, 2005, 46(11): 1848 – 1854.
- [10] MISHRA S, ALAVILLI H, LEE B, et al. Cloning and functional characterization of a vacuolar Na<sup>+</sup>/H<sup>+</sup> antiporter gene from mungbean (VrNHX1) and its ectopic expression enhanced salt tolerance in *Arabidopsis thaliana* [J]. PLoS One, 2014, 9(10): 1 – 14.
- [11] RODRÍGUEZ-ROSALES M P, JIANG X Y, GALVEZ F J. Overexpression of the tomato K<sup>+</sup>/H<sup>+</sup> antiporter LeNHX2 confers salt tolerance by improving potassium compartmentalization [J]. New Phytologist, 2008, 179(2): 366 – 377.
- [12] LIN P, WILLIAMS W, LUU Y, et al. Secretory carrier membrane proteins interact and regulate trafficking of the organellar (Na<sup>+</sup>, K<sup>+</sup>)/H<sup>+</sup> exchanger NHE7 [J]. Journal of Cell Science, 2005, 118(9): 1885 – 1897.
- [13] DIERING G H, CHURCH J, NUMATA M. Secretory carrier membrane protein 2 regulates cell-surface targeting of brainenriched Na<sup>+</sup>/H<sup>+</sup> exchanger NHE5 [J]. The Journal of Biological Chemistry, 2005, 284(20): 13892 – 903.
- [14] 王莉. 小麦耐盐基因的克隆与功能研究[D]. 石家庄: 河北师范大学, 2010.
- [15] 李杰辉. 拟南芥 AtSCAMP 家族的功能研究[D]. 石家庄: 河北师范大学, 2011.
- [16] BRAND S H, LAURIE S M, MIXON M B, et al. Secretory carrier membrane proteins 31-35 define a common protein com-

position among secretory carrier membranes [J]. The Journal of Biological Chemistry, 1991, 266(28): 18949 – 18957.

- [17] GUO Z, LIU L, CAFISO D, et al. Perturbation of a very late step of regulated exocytosis by a secretory carrier membrane protein (SCAMP2)-derived peptide [J]. The Journal of Biological Chemistry, 2002, 277(38): 35357 – 35363.
- [18] BURGESS T L, KELLY R B. Constitutive and regulated secretion of proteins [J]. Annual Review of Cell Biology, 1987, 3(3): 243 – 293.
- [19] FALGUIERES T, CASTLE D, GRUENBERG J. Regulation of the MVB pathway by SCAMP3 [J]. Traffic, 2012, 13(1): 131 142.
- [20] THOMAS P, WOHLFORD D, QUYEN L. SCAMP 3 is a novel regulator of endosomal morphology and composition [J]. Biochemical and Biophysical Research Communications, 2016, 478(3): 1028 – 1034.
- [21] WANG H, TSE Y C, ANGUS H Y, et al. Vacuolar sorting receptors (VSRs) and secretory carrier membrane proteins (SCAMPs) are essential for pollen tube growth [J]. The Plant Journal, 2010, 61(5): 826 838.
- [22] 付乾堂, 余迪求. 拟南芥 AtWRKY25、AtWRKY26 和 AtWRKY33 在非生物胁迫条件下的表达分析[J]. 遗传, 2010, 32(8): 848-856.
- [23] 王立光, 叶春雷, 陈军, 等. 植物 Na<sup>+</sup>, K<sup>+</sup>/H<sup>+</sup>反向转运体: pH 平衡与囊泡运输[J]. 生物技术通报, 2020, 36(4): 1-8.
- [24] XU H, JIANG X, ZHAN K, et al. Functional characterization of a wheat plasma membrane Na<sup>+</sup>/H<sup>+</sup> antiporter in yeast [J]. Archives of Biochemistry and Biophysics, 2008, 473(1): 8 15.
- [25] YOKOI S, QUINTERO F J, CUBERO B, et al. Differential expression and function of *Arabidopsis thaliana* NHX Na<sup>+</sup>/H<sup>+</sup> antiporters in the salt stress response [J]. The Plant Journal, 2002, 30(5): 529 539.
- [26] LIU J, ISHITANI M, HALFTER U, et al. The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance [J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(7): 3730 – 3734.
- [27] HUANG G T, MA S L, BAI L P, et al. Signal transduction during cold, salt, and drought stresses in plants [J]. Molecular Biology Reports, 2012, 39(2): 969 – 987.

## Cloning and Bioinformatics Analysis of SCAMP Genes from Arabidopsis thaliana under Salt Stress

BAI Xueyang<sup>1</sup>, CHEN Xiuzhen<sup>1</sup>, HUANG Tianfan<sup>1</sup>, JIANG Xingyu<sup>1</sup>, ZHOU Yang<sup>2</sup>

College of Tropical Crops/Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops, Hainan University, Haikou, Hainan 570228;
College of Horticulture, Hainan University, Haikou, Hainan 570228, China)

**Abstract:** To investigate the role of secretory carrier membrane protein (*SCAMP*), five *SCAMP* genes were cloned from *Arabidopsis thaliana* by PCR method for bioinformatics analysis, and their expression under salt stress was analyzed by using the real time quantitative PCR (qRT-PCR). Bioinformatics analysis showed that the *AtSCAMP* proteins have a molecular weight of 30.1-33.2 kDa with an isoelectric point (pI) of 6.60-9.18, and hence belong to unstable hydrophobic proteins. The secondary structure of the *AtSCAMP* proteins contains four conformations:  $\alpha$ -helix (Hh), random coil (Cc), extended strand (Ee) and  $\beta$ -turn (Tt), of which  $\alpha$ -helix is the main part. There are four transmembrane domains in the *AtSCAMP* proteins, and the N-terminus and C-terminus are located in the cell membrane. The qRT-PCR results showed that the expression of the *AtSCAMP3*, *AtSCAMP4* and *AtSCAMP5* was higher in the leaves of *A. thaliana* than in the roots, and the most significant changes were found in the expression of *AtSCAMP4* and *AtSCAMP5* in leaves under salt stress.

Keywords: salt stress; *Arabidopsis thaliana*; secretory carrier membrane proteins; gene cloning; expression analysis; bioinformatics