文章编号:1674-7054(2019)02-0178-06

CHRNA7 基因荧光定量 PCR 检测方法的建立

刘益巧 孙志华 浅江 长孙东亭 罗素兰

(海南大学海洋学院/海南大学热带生物资源教育部重点实验室/海口市海洋药物重点实验室,海口 570228)

摘 要:为了检测烟碱型乙酰胆碱受体(nicotine acetylcholine receptors ,nAChRs) α 7 亚基基因(*CHRNA7*) 的表 达,笔者根据人源 *CHRNA7* 基因序列设计引物,PCR 扩增 *CHRNA7* 基因,亚克隆到 pMD-18T 载体中后,测序 鉴定并制备重组质粒,以梯度稀释的重组质粒为模板,进行荧光定量 PCR 来绘制标准曲线,并进行灵敏度和 重复性实验,成功建立了检测 *CHRNA7* 基因的荧光定量 PCR 方法。该方法最低可检测 10¹ copies • μ L⁻¹,且 重复性良好,在 10⁴,10⁵,10⁶ copies • μ L⁻¹时 5 次重复的变异系数分别是 1.22%,1.90% 2.63%。此外,还 对人宫颈癌细胞 SiHa 和人正常宫颈细胞 Ect1/E6E7 中 α 7 nAChR 亚基基因表达量进行检测,结果显示, α 7 nAChR 亚基在 SiHa 细胞系的表达明显低于其在 Ect1/E6E7 细胞系中的表达(*P*=0.015)。 关键词: α 7 nAChR;宫颈癌;荧光定量 PCR

中图分类号: Q 786 文献标志码: A DOI: 10.15886/j. cnki. rdswxb. 2019.02.013

烟碱型乙酰胆碱受体(nAChRs) 是五聚体离子通道,由 $\alpha(\alpha 1 - \alpha 10)$ 和 $\beta(\beta 1 - \beta 4)$ 亚基组合构建,一般形成异源五聚体,也有一些亚基可以形成同源五聚体($\alpha 7 \alpha 9$)^[1]。nAChRs 广泛表达于各种肿瘤细胞中,参与细胞增殖、血管生成、凋亡、迁移、侵袭和分泌的调节^[2-3]。 $\alpha 7$ nAChR 是研究最多的亚型,它是 Ca²⁺依赖性信号通路(如 PKA,PKC,PI3K/Akt 和 MAPK 等)的重要通道^[4]。研究表明, $\alpha 7$ nAChR 在肺癌、膀胱癌、结肠癌、胃癌、胰腺癌和胆管癌等多种肿瘤细胞中表达,与这些癌症密切相关^[5-10]。但 $\alpha 7$ nAChR 在宫颈癌中的表达情况研究甚少。CALLEJA-MACIAS^[11]等人也仅通过常规的 RT-PCR 方法,对人 宫颈癌细胞系中 $\alpha 7$ nAChR 亚基的 mRNA 水平进行了检测,但未进行定量检测。若要对 $\alpha 7$ nAChR 亚基 在宫颈(癌)细胞中 mRNA 水平的表达进行定量检测,从而进一步研究该亚基在宫颈癌中的作用,就需要 一种能准确定量的检测方法。荧光定量 PCR 检测方法简便准确,已广泛用于多种基因如癌基因和免疫调 节基因的检测与表达分析^[12-13]。因此,笔者根据人源 *CHRNA7*基因序列设计引物,PCR 扩增 *CHRNA7*基 因,亚克隆到 pMD-18T 载体中后,测序鉴定并制备重组质粒,试图建立一套标准的荧光定量 PCR 方法,旨 在为进一步研究 $\alpha 7$ nAChR 在宫颈癌中的作用机理奠定基础。

1 材料与方法

1.1 材料与试剂 人宫颈癌细胞系 SiHa 和人正常宫颈细胞系 Ectl /E6E7 购自 ATCC 细胞库。胎牛血清 (FBS) 购自美国 GIBCO 公司 细胞培养皿、DMEM 培养基、1×PBS 缓冲液、100×青霉素 - 链霉素溶液、胰 蛋白酶细胞消化液、4S Red Plus 核酸染色剂(10 000×水溶液) 购自上海生工生物工程股份有限公司; Tr-izol 购自美国 Invitrogen 公司; High Capacity cDNA Reverse Transcription Kit 购自美国 Thermo Scientific 公 司; Easy *Taq* DNA Polymerase 购自北京全式金生物公司; SYBR Green I Master 购自瑞士 ROCHE 公司; 胶 回收试剂盒和质粒小量提取试剂盒购自美国 OMEGA 公司; 克隆载体 pMD-18T 购自 TaKaRa; 琼脂糖购自

基金项目: 国家自然科学基金项目(81872794)

通信作者: 罗素兰(1969-), 女 教授,博导.研究方向:海洋药物与生物技术. E-mail: luosulan2003@163. com

收稿日期: 2019-03-25 修回日期: 2019-04-05

作者简介:刘益巧(1994 –),女,海南大学海洋学院 2016 级硕士研究生. E-mail: 576494486@ qq. com

德国 BioFROXX 公司; DNA Marker 购自北京天根生化科技有限公司; 大肠杆菌 *E. coli* DH5 α 由笔者所在实 验室保存 ,其他试剂为国产分析纯。

1.2 实验仪器 CO₂ 恒温培养箱(SANYO);多功能微量高速冷冻离心机(HITACHI); Nanodrop 2000 (Thermal Scientific); PCR 扩增仪(Applied Biosystems); 电泳槽(Bio-Rad);凝胶成像仪(Alpha); qTOW-ER³G 荧光定量 PCR 仪(Analtikjena)。

1.3 引物设计 根据在 GenBank 中搜索到的人源 CHRNA7 基因序列设计引物,即上游引物: 5⁻-CCAC-CAACATTTGGCTGCAA-3^{-/},下游引物: 5⁻-TATGCCTGGAGGCAGGTACT-3^{-/}。预期扩增目的片段的长度为 218 bp,引物由生工生物工程(上海)股份有限公司合成。

1.4 细胞培养 将 SiHa 和 Ect1/E6E7 细胞复苏于 6 cm 的培养皿中 在 37 ℃ φ = 5% 的 CO₂ 培养箱中 培养 培养液为 *w* = 10% FBS 的 DMEM。在倒置显微镜下 ,每日观察细胞的形态及其生长状态 ,待细胞处 于对数生长期时 ,用胰酶消化细胞进行传代。

1.5 总 RNA 的提取及 cDNA 的合成 待细胞处于对数生长期时 吸弃旧培养液 用 1×PBS 缓冲液润洗 细胞 3 次后 使用 Trizol 试剂裂解细胞并按照说明书提取细胞总 RNA。Nanodrop 2000 测定总 RNA 浓度、 $OD_{260/230}$ 以及 $OD_{260/230}$ 的值 ,通过 w = 1% 的甲醛变性琼脂糖凝胶电泳确定提取的总 RNA 的完整性。将纯度 较高、完整性较好的总 RNA 反转录成 cDNA ,反转录体系为 20 µL: 10×RT Buffer 2 µL 25×dNTP Mix(100 mmol·L⁻¹) 0.8 µL ,10×RT Random Primers 2 µL MultiScribeTM Reverse Transcriptase 1 µL RNase Inbitior 1 µL Nuclease-free H₂O 3.2 µL 混匀 加入上述提取的总 RNA 10 µL(400 mg·L⁻¹)。PCR 反应条件: 25 °C 10 min 37 °C 120 min 85 °C 5 min。产物保存于 – 20 °C 备用。

1.6 目的片段的扩增及回收 以合成的 cDNA 为模板 ,PCR 扩增 *CHRNA7* 基因。PCR 反应体系(25 µL): 模板 1 µL ,上游和下游引物(10 µmol・L⁻¹) 各 0.5 µL ,10 × Easy *Taq* Buffer 2.5 µL Easy *Taq* DNA Polymerase 0.5 µL 2.5 mmol・L⁻¹ dNTPs 2 µL ,Nuclease-free Water 18 µL。PCR 反应条件为: 预变性 94 ℃ 5 min; 然后 94 ℃ 30 s 58 ℃ 30 s 72 ℃ 40 s 35 个循环; 最终延伸 72 ℃ 7 min。PCR 产物经 w = 1.5% 琼脂糖凝 胶电泳检测 ,用胶回收试剂盒回收目的片段。

1.7 标准品的制备 将回收的目的片段连接到 pMD18-T 载体上,连接体系为:目的片段 4.5 µL Solution I 5 µL pMD-18T 载体 0.5 µL A ℃连接过夜。将连接产物转化 *E. coli* DH5α 感受态,在含有 AMP(50 mg・ L⁻¹)的 LB 平板上筛选阳性克隆。经菌液 PCR 鉴定后 将阳性克隆的菌液送至上海生工生物工程股份有限 公司进行测序。测序鉴定正确后 提取质粒 Nanodrop 2000 测定质粒的浓度,计算质粒的拷贝数 (质粒拷 贝数(copies・µL⁻¹) = 6.02 × 10²³ × 质粒浓度 / [(质粒相对分子质量 + 插入片段相对分子质量) × 660]〕。 1.8 荧光定量 PCR 反应条件的优化 以 10⁵ copies・µL⁻¹质粒标准品为模板,设立 10 µL 的初始反应体 系:上、下游引物各 0.2 µL SYBR Green I 5 µL 模板 1 µL Nuclease-free H₂O 3.6 µL。初始反应条件为: 95 ℃ 5 min(1 个循环); 95 ℃ 10 s 60 ℃ 30 s(40 个循环)。

循环数的优化:通过查阅文献 将循环数分别设置为 35 40 45 进行荧光定量 PCR 反应 ,选择 Ct 值最低且熔解曲线为单峰时的循环数作为最终循环数。

退火温度的优化:根据所设计引物的 Tm 值 在 55 ~65 ℃范围内根据梯度确定合适的退火温度 炭光 定量 PCR 仪在该范围自动设置温度梯度为 55.0 55.9 57.0 58.2 59.4 60.6 61.8 63.0 64.1 65 ℃ ,以 这些温度为退火温度进行荧光定量 PCR 反应 ,选择 Ct 值最低且熔解曲线为单峰时的退火温度作为最终 退火温度。

1.9 荧光定量 PCR 标准曲线的建立及灵敏度试验 为了建立标准曲线并确定检测方法能检测到的最 小拷贝数 ,用经灭菌的 ddH_2O 将质粒进行 10 倍稀释 ,分别以 10¹ ,10² ,10³ ,10⁴ ,10⁵ ,10⁶ copies • μL^{-1} 的质 粒标准品为模板 ,按照 1.8 优化后的条件进行荧光定量 PCR 反应。以拷贝数的对数值为横坐标 ,循环阈 值(*Ct*) 为纵坐标建立标准曲线。

1.10 重复性试验 连续以 10^4 10^5 10^6 copies • μL^{-1} 的质粒标准品为模板作 5 次重复的荧光定量 PCR 反应 按照公式计算变异系数(变异系数 = 标准偏差/平均数) 以判断检测体系稳定性。

1.11 |样品检测 用上述建立的荧光定量 PCR 方法对 SiHa 和 Ectl/E6E7 细胞进行检测。以各细胞4 μg 总 RNA 反转录合成的 cDNA 为模板进行荧光定量 PCR 反应 2 株细胞各重复 3 次实验。

结果与分析 2

2.1 α7 nAChR 亚基的 PCR 扩增及验证 提取总 RNA 后经 Nanodrop 2000 测定,每株细胞的 OD_{260/280}以 及 $OD_{260/230}$ 的比值约为 2 ,表明提取的总 RNA 纯度较高 ,多酚和碳水化合物含量低。经 w = 1% 甲醛变性 琼脂糖凝胶电泳进一步检测后,观察到28s,18s5s条带,总RNA虽有降解,但不严重,对后续PCR扩增 检测影响较小(图1)。将此总 RNA 反转录成 cDNA 用 CHRNA7 基因引物对其进行 PCR 扩增 A = 1.5%的琼脂糖凝胶电泳检测 PCR 产物 凝胶成像仪显示 ,有特异性条带出现 ,位置与预期大小 218 bp 相符(图 2)。 菌液 PCR 及测序验证该扩增产物确为目的片段。

图 1 细胞总 RNA 电泳图 1. 人宫颈癌细胞系 SiHa; 2. 人正常宫颈细胞系 Ect1/E6E7 Fig.1 Detection of total RNA in cells 1. Human cervical cancer cell line SiHa; 2. Human normal ectocervical cell line Ect1/E6E7

图 2 PCR 扩增 CHRNA7 基因 M. DNA 相对分子质量标准 1200; 1. 人宫颈癌细胞系 SiHa 的 PCR 产物; 2. 人正常宫颈细胞系 Ect1/E6E7 的 PCR 产物 Fig.2 PCR amplification of CHRNA7 gene 1. PCR product of human cervical cancer cell line SiHa; 2. PCR product of human normal ectocervical cell line Ect1/E6E7

2.2 反应条件的优化 荧光定量 PCR 的循环数与反应的灵敏度有关(Ct值小灵敏度高)。从表1可知, 循环数为 45 时 其熔解曲线为单峰 *Ct* 值最小 故最优循环数为 45。

合适的退火温度会增加荧光定量 PCR 反应的特异性 ,使所得结果更准确。从图 3 可知 ,除 65 ℃外 (其 Ct 值太低未检测到),各温度所产生的熔解曲线都为单峰、Tm 值都均一,且在 59.4 $^{\circ}$ $^{\circ}$ 和 60.6 $^{\circ}$ 时, 其 Ct 值较小 故最优的退火温度为 $60 \, ^{\circ}$ 。

经过对反应条件的优化 最终确定的反应条件为:95 ℃ 5 min(1 个循环); 95 ℃ 10 s 60 ℃ 30 s(45 个循环)。

1ab. 1	Optimization of cycle number of real-time f	CR detection of CHRNA7 gene
循环数 Cycles	Ct 值	熔解温度 Tm/℃ Annealing temperature
35	20.27	78.58
40	19.57	78.65
45	17.7	78.75

表1 CHRNA7 基因荧光定量 PCR 检测方法循环数的优化

f and the DCD data the .f CHDMA7

2.3 标准曲线的建立及灵敏度 Nanodrop 2000 测定得到质粒标准品质量浓度为 152.8 mg • L⁻¹,按照 1.7 公式计算其拷贝数为(4.79E + 10) copies • μL⁻¹,将其稀释成 10¹,10²,10³,10⁴,10⁵,10⁶ copies • μL^{-1} ,用上述优化的反应条件进行荧光定量 PCR。以 α 7 nAChR-Ect1/E6E7 拷贝数的对数值作为横坐标, Ct 值作为纵坐标建立标准曲线。建立的标准曲线回归方程为: y = -3.6834x + 37.272 $R^2 = 0.9951$,表 明在 $(10^1 \sim 10^6)$ copies • μL^{-1} 范围内具有良好的线性关系。当拷贝数为最低值 10^1 copies • μL^{-1} 时 ,反应 有荧光信号 $\mathcal{L}t$ 值为 33.49。故此方法最低可以定量 10^1 copies • μL^{-1} 的目的基因(图 4)。

图 3 CHRNA7 基因荧光定量 PCR 检测方法之退火温度的优化 A. CHRNA7 基因荧光定量 PCR 各温度的熔解曲线; B. CHRNA7 基因荧光定量 PCR 各温度的扩增曲线 Fig.3 Optimization of annealing temperature for detection of CHRNA7 gene by qPCR A. Dissolve curves of qPCR for CHRNA7 gene at different annealing temperatures; B. Amplification curves of qPCR for

CHRNA7 gene at different annealing temperatures

2.4 重复性试验 对 10⁴,10⁵,10⁶ copies • μL⁻¹的质粒标准品连续进行 5 次荧光定量 PCR 反应,所得的 *Ct* 平均值分别为 23.01,18.46,14.46,变异系数分别为 1.22%,1.90%, 2.63%。3 个拷贝数的变异系数 均小于 5%,说明所建立的方法重复性较好(表 2)

	Tab. 2	Repeatabil	ity analysis	of real-time	PCR detect	ion of CHRNA	7 gene	
起始拷贝数 Initial copies /	Ct 1	Ct 2	Ct 3	Ct 4	Ct 5	Ct 平均值	标准差 SD	变异系数 CV/%
(copies • μL^{-1})								
10 ⁴	23.31	22.84	23.1	23.17	22.62	23.01	0.28	1.22
10 ⁵	18.47	18.42	18.75	18.74	17.9	18.46	0.35	1.90
10 ⁶	14.22	14.46	14.82	14.85	13.96	14.46	0.38	2.63

表 2 CHRNA7 基因荧光定量 PCR 检测方法重复性分析

2.5 样品检测 对 SiHa 细胞系和 Ect1/E6E7 细胞系进行荧光定量 PCR 的检测结果显示 ,与 Ect1/E6E7 细胞系相比 α 7 nAChR 亚基在 SiHa 细胞系中的表达明显低(*P* = 0.015)(图 5)。SiHa 细胞系和 Ect1/E6E7 细胞系的平均起始拷贝数分别为 15 618.53 copies • μ L⁻¹和 27 236.9 copies • μ L⁻¹(表 3)。

图 4 荧光定量 PCR 灵敏度及标准曲线 Fig.4 The sensitivity and standard curve of the real-time PCR

* Compared with human normal cervical cell line, *P*<0.05

表3	CHRNA7	基因表达的起始拷贝数
----	--------	------------

Гаb. З	Initial	copies	of	CHRNA7	gene
					<i>n</i>

细胞系 Cell line	Ct 值	起始拷贝数/(copies • μL ⁻¹) Initial copies
SiHa	21.89 ± 0.33	15 618.53 ±2 934.08
Ect1 / E6E7	20.97 ± 0.23	27 236.90 ±4 150.30

3 讨 论

nAChRs 是经典的配体门控离子通道,广泛表达于神经肌肉接头、中枢和外周神经系统以及非神经性 组织和细胞中 在机体内发挥着重要作用。 α 7 nAChR 作为 nAChRs 中的一种特殊亚型 ,具有通道开放概 率低、浓度依赖性快速脱敏和钙通透性高的特点^[14-15]。越来越多的研究表明 α 7 nAChR 是多种癌症的 潜在治疗靶点^[16-17]。研究 α 7 nAChR 在宫颈癌细胞与正常宫颈细胞的表达并分析表达差异有助于了解 α 7 nAChR 与宫颈癌的关系。

基因 mRNA 水平表达的检测方法主要有 PCR Northern blot 基因芯片和荧光定量 PCR^[11,18-20]。在这 几种方法中 ,PCR 常用作定性检测 Northern blot 虽然可定量检测 ,但操作复杂且整个过程持续时间长 ,基 因芯片主要用于 mRNA 表达谱检测 ,而荧光定量 PCR 作为一种经典的分子生物学定量检测方法 ,在医学、 微生物学、兽医学、农业、药理学和毒理学等领域广泛应用^[21]。荧光定量 PCR 是通过测量荧光染料与 PCR 产物结合引起的荧光增加 .在反应过程中连续测定扩增产物的积累来实现对模板的定量 ,具有精确 度高、动态范围高和特异性强的优点 ,整个反应过程一步完成 ,无对反应产物进行后期处理的过程 ,大大 避免了后期污染和假阳性的发生^[22-23]。

SYBR Green 法和 Taqman 探针法是荧光定量 PCR 常用的 2 种方法,其中 SYBR Green 法应用简便且 成本低,然而任何种类的双链 DNA 都能与它结合,导致引物二聚体产生的几率增加^[24]。引物二聚体能与 SYBR Green 结合并且产生荧光信号,这会降低检测方法的敏感性,故要避免引物二聚体的出现。本研究 建立的宫颈癌中 α 7 nAChR 亚基的荧光定量 PCR 方法,通过对循环数、退火温度进行优化,扩增产生的熔 解曲线为单峰且 *Tm* 值比较平均,有效地避免了引物非特异性扩增的出现。此外,该方法敏感性高,检测 限最低检测量为 10 拷贝数的目的基因。标准曲线回归方程的 $R^2 = 0.995$ 1,所检测的范围为($10^1 ~ 10^6$) copies • μL^{-1} ,通过将测得的 *Ct* 值代入标准曲线回归方程能准确地计算出目的基因的起始拷贝数,可以 用于 α 7 nAChR 亚基的定量检测。对 SiHa 和 Ect1/E6E7 细胞系的检测结果显示, SiHa 细胞系的平均起始 拷贝数为 15 618.53 copies • μL^{-1} ,Ect1/E6E7 细胞系的平均起始拷贝数为 27 236.9 copies • μL^{-1} ,统计 学分析结果表明两者存在差异 α 7 nAChR 在癌细胞 SiHa 中的表达显著低于其在正常细胞 Ect1/E6E7 中 的表达。

综上所述 ,笔者所建立的 α7 nAChR 亚基的荧光定量 PCR 方法 ,其操作方便快捷、敏感性高、检测结 果准确 ,可以用于 CHRNA7 基因的表达检测。

参考文献:

- KALAMIDA D , POULAS K , AVRAMOPOULOU V , et al. Muscle and neuronal nicotinic acetylcholine receptors: Structure , function and pathogenicity [J]. FEBS J. , 2007 , 274(15): 3799 - 3845.
- [2] EGLETON R D, BROWN K C, DASGUPTA P. Nicotinic acetylcholine receptors in cancer: multiple roles in proliferation and inhibition of apoptosis [J]. Trends Pharmacol Sci., 2008, 29(3): 151-158.
- [3] DANG N, MENG X, SONG H. Nicotinic acetylcholine receptors and cancer [J]. Biomed Rep., 2016, 4(5): 515-518.
- [4] SUZUKI T, HIDE I, MATSUBARA A, et al. Microglial alpha7 nicotinic acetylcholine receptors drive a phospholipase C/IP3 pathway and modulate the cell activation toward a neuroprotective role [J]. J. Neurosci Res., 2006, 83(8): 1461-1470.
- [5] MEI D , ZHAO L , CHEN B , et al. α-Conotoxin ImI-modified polymeric micelles as potential nanocarriers for targeted docetaxel delivery to alpha7-nAChR overexpressed non-small cell lung cancer [J]. Drug Deliv , 2018 , 25(1): 493 – 503.
- [6] CHEN R J, HO Y S, GUO H R, et al. Rapid Activation of Stat3 and ERK1/2 by Nicotine Modulates Cell Proliferation in Human Bladder Cancer Cells [J]. Toxicological Sciences, 2007, 104(2): 283 – 293.
- [7] WEI P L, CHANG Y J, HO Y S, et al. Tobacco-specific carcinogen enhances colon cancer cell migration through alpha7-nicotinic acetylcholine receptor [J]. Ann Surg , 2009, 249(6): 978 – 985.
- [8] WANG W, CHIN-SHENG H, KUO L J, et al. NNK enhances cell migration through alpha7-nicotinic acetylcholine receptor accompanied by increased of fibronectin expression in gastric cancer [J]. Ann Surg Oncol, 2012, 19(S3): 580 – 5588.
- [9] JIN T, HAO J, FAN D. Nicotine induces aberrant hypermethylation of tumor suppressor genes in pancreatic epithelial ductal cells [J]. Biochem Biophys Res Commun, 2018, 499(4): 934 – 940.
- [10] MARTINEZ A K, JENSEN K, HALL C, et al. Nicotine promotes cholangiocarcinoma growth in xenograft mice [J]. Am J.

183

Pathol, 2017, 187(5): 1093-1105.

- [11] CALLEJA-MACIAS I E , KALANTARI M , BERNARD H U. Cholinergic signaling through nicotinic acetylcholine receptors stimulates the proliferation of cervical cancer cells: an explanation for the molecular role of tobacco smoking in cervical carcinogenesis? [J]. Int. J. Cancer , 2009 , 124(5): 1090 – 1096.
- [12] 王晓楠,程民,胡世莲.鳞状细胞癌抗原1mRNA 实时荧光定量 RT-PCR 检测方法建立与应用[J]. 中华肿瘤防治杂 志,2018,25(7):471-475.
- [13] 张敬梅,顾亦韧,李江凌,等. 乌金猪、青峪猪和成华猪免疫器官多种免疫调节基因表达的比较[J]. 畜牧与兽医, 2018,50(10):43-48.
- [14] PAPKE R L, PORTER PAPKE J K. Comparative pharmacology of rat and human alpha7 nAChR conducted with net charge analysis [J]. Br. J. Pharmacol, 2002, 137(1): 49-61.
- [15] UTESHEV V V. alpha7 nicotinic ACh receptors as a ligand-gated source of Ca²⁺ ions: the search for a Ca²⁺ optimum [J]. Adv Exp. Med. Biol. , 2012 , 740: 603 - 638.
- [16] GRANDO S A. Connections of nicotine to cancer [J]. Nat. Rev. Cancer , 2014 , 14(6): 419-429.
- [17] ZHAO Y. The Oncogenic Functions of Nicotinic Acetylcholine Receptors [J]. J. Oncol , 2016(2). doi: 10.1155/2016/ 9650481.
- [18] CUI H , LAN X , LU S , et al. Preparation of monoclonal antibody against human KIAA0100 protein and Northern blot analysis of human KIAA0100 gene [J]. J. Pharm Anal , 2017 , 7(3): 190 – 195.
- [19] GUO Y, XIE X, GUO C, et al. Effect of electro-acupuncture on gene expression in heart of rats with stress-induced pre-hypertension based on gene chip technology [J]. J. Tradit Chin Med, 2015, 35(3): 285 – 294.
- [20] LI W F, DAI H, OU Q, et al. Overexpression of microRNA-30a-5p inhibits liver cancer cell proliferation and induces apoptosis by targeting MTDH/PTEN/AKT pathway [J]. Tumour Biol., 2016, 37(5): 5885-5895.
- [21] NAVARRO E, SERRANO-HERAS G, CASTANO M J, et al. Real-time PCR detection chemistry [J]. Clin Chim Acta, 2015, 439: 231 – 250.
- [22] RODRIGUEZ A, RODRIGUEZ M, CORDOBA J J, et al. Design of primers and probes for quantitative real-time PCR methods [J]. Methods Mol Biol., 2015, 1275: 31 – 56.
- [23] MALANDRAKI I, BERIS D, ISAIOGLOU I, et al. Simultaneous detection of three pome fruit tree viruses by one-step multiplex quantitative RT-PCR [J]. Plos One 2017, 12(7): 1 – 14.
- [24] SINGH A, PANDEY G K. Primer design using Primer Express(R) for SYBR Green-based quantitative PCR [J]. Methods Mol Biol., 2015, 1275: 153 – 164.

Establishment of Real-time PCR for Detection of CHRNA7 Gene

LIU Yiqiao , SUN Zhihua , QIAN Jiang , ZHANGSUN Dongting ,LUO Sulan

(College of Marine , Hainan University / Key Laboratory of Tropical Biological Resources of Ministry of Education / Key Lab for Marine Drugs of Haikou , Hainan University , Haikou , Hainan 570228 , China)

Abstract: In order to detect the expression of α 7 nicotine acetylcholine receptor (nAChR) subunit gene (*CHRNA7*), the primers were designed according to the sequence of human *CHRNA7* gene, and then *CHRNA7* gene was amplified by PCR. After being cloned into pMD-18T vector, the recombinant plasmid was sequenced and prepared. The recombinant plasmids were gradient diluted and used as templates to establish standard curves for real-time PCR. The sensitivity and repeatability of the real-time PCR were carried out. A real-time PCR method for detecting *CHRNA7* was successfully established. With this method *CHRNA7* gene was detected 10 copies • μ L⁻¹ at the lowest. The variation coefficients of five replications of the three templates at 10⁴, 10⁵ and 10⁶ copies • μ L⁻¹ were 1.22%, 1.90% and 2.63%, respectively, which indicated the real-time PCR detection had a good repeatability. Furthermore, the detection of α 7 nAChR subunit gene expression in human cervical cancer cell line SiHa and human normal cervical cell line Ect1/E6E7 showed that the expression of α 7 nAChR subunit in SiHa cells was significantly lower than that in Ect1/E6E7 cells (*P* = 0.015).

Keywords: α 7 nAChR; cervical cancer; real-time PCR

(责任编辑:潘学峰)