文章编号:1674-7054(2016)02-0246-07

木薯地毯草黄单胞菌转化子 T-DNA 插入模式分析

张长正^{1,2} 刘进平¹ 时 涛² 李超萍² 陈奕鹏² 黄贵修²

(1. 海南大学 农学院,海口 570228; 2. 中国热带农业科学院 环境与植物保护研究所,海口 571101)

摘 要: 随机挑取 30 个已构建的木薯地毯草黄单胞菌(*Xanthomonas axonopodis* pv. *manihotis*) Tn5 转化子, 利用 hiTail – PCR 技术获得 Tn5 转座子插入位点的侧翼序列 64 条。其中,有 19 个转化子获得了插入位点左 右两端的侧翼序列,11 个转化子获得了单侧侧翼序列。序列分析结果发现,插入位点集中在低 GC 含量区, 特别是 49% ~50% 的区域; Tn5 转座子倾向于插入基因编码区内; Tn5 转座子的插入会形成 9 bp 正向重复序 列,且插入方向没有偏好性 9 bp 正向重复序列的上下游碱基位点中,-5,-2,4 *4 5 6 9*,11 位可能对转座 酶的识别起关键作用。

关键词:木薯;细菌性枯萎病菌;T-DNA 插入模式 中图分类号:S 435.33 文献标志码:A DOI:10.15886/j.cnki.rdswxb.2016.02.018

木薯(*Manihot esculenta*) 起源于热带美洲地区^[1],具有高产、易栽培、耐旱、耐贫瘠等特点,目前广泛种 植于亚洲、非洲和拉丁美洲的100多个国家和地区^[2]。木薯在我国的种植历史接近两百年,主要用作工 业原料生产淀粉、酒精等产品^[3]。我国2014年木薯种植面积约39.27万hm²,但是仍不能满足自给,是世 界第1大木薯进口国^[4-6]。由地毯草黄单胞木薯萎蔫致病变种(*Xanthomonas axonopodis* pv. *manihotis*, Xam)引起的细菌性枯萎病可造成12%~100%的产量损失^[7],是世界范围内木薯生产中的重要病害,也 是我国木薯第1大病害^[8]。国外完成了65个Xam菌株的基因组序列测定及2个菌株基因组序列的分析 工作^[9-11],并证明病菌质粒上的*TALEI*基因和致病性相关^[12]。中国热带农业科学院环境与植物保护研 究所也完成了菌株GX11的全基因组序列测定并构建了插入转化子库^[13],发现*HrpG*基因参与了病菌的 致病过程^[14]。与水稻、小麦等作物主要病害相比,Xam病菌的致病机理研究还很少,限制了相关防控技术 的研究工作。利用Tn5转座子进行插入突变是病原细菌研究中的常用手段,但有关该转座子插入模式方 面的研究还鲜见报道。笔者在前期构建Xam病菌转化子库的基础上,开展了Tn5转座子插入模式的研 究,以便更好地开展该病菌致病分子机理研究,同时也为其他病原细菌致病相关基因的鉴定提供有益的 借鉴。

1 材料与方法

1.1 试验材料 (1)供试菌株:供试转化子 30 个 编号见表 1。(2)试剂和培养基: Xam 病菌转化子和大 肠杆菌使用的培养基分别为 YPG ,LB ,SOC 等培养基 ,制备方法参照文献 [15]。*Taq* 酶、dNTP 和大肠杆菌 感受态细胞 DH5α 购自天根生化科技(北京)有限公司; X-gal ,IPTG ,pMD18-T 载体和 DNA 片段胶回收试 剂盒购自宝生物工程(大连)有限公司; 引物由北京六合华大基因科技股份有限公司合成; 其他试剂均为 国产分析纯。

收稿日期: 2016-02-25

基金项目: 国家木薯现代产业技术体系建设项目(CARS – 12 – hnhgx); 2014 年海南省研究生创新科研课题 (Hys2014 – 04)

作者简介: 张长正(1991 -) , 男, 海南大学农学院 2013 级硕士研究生. E-mail: djzcz@ outlook. com

通信作者: 黄贵修(1968 -) , 男 研究员. 研究方向: 植物病理学. E-mail: hgxiu@ vip. 163. com

1.2 转化子 DNA 的提取 各转化子活化后 参照文献 [16] 的方法提取基因组 DNA。

1.3 转化子插入位点侧翼序列的分离 采用 hiTail-PCR 进行转化子插入位点,侧翼序列的分离。参照 文献[13]和文献[17]的方法,合成简并引物 LAD1-4, LAD1-2, LAD1-3, LAD1-4, 通用引物 AC1, 持异性引 物 SP1 SP3 SPF1 SPF3。根据 T-DNA 片段序列和简并引物(LAD1-4 ~ LAD1-4) 5⁻端部分序列设计特异 性引物 LSP2(ACGATGGACTCCAGTCCGG CCAAGACGTTTCCCGTTGAATATG)和 LSPF2(ACGATGGACTC-CAGTCCGGCCAACCTACAACAA AGC TCTCATCAACC) 2条特异引物。预扩增、第1轮扩增和第2轮扩增的 反应体系和参数参照文献[17]。扩增产物纯化回收后连接 T 载体并转化大肠杆菌, 各条带分别选择 3 个 阳性转化子进行测序确认。采用 Blast 程序将所获序列和 pMD18-T 载体、Tn5 转座子插入片段序列进行 比对,获得插入位点侧翼序列。

1.4 转化子 T-DNA 插入模式分析 参考文献 [18]的方法分析其序列同源性、明确各转化子的插入位 点。比较转座子插入片段上 Kan 基因和插入位点预测的读码框,明确该位点的插入方向。提取插入位点 上下游各 0.5 kb 的基因组序列,分析其 GC 含量。根据插入位点基因预测结果分析编码基因的保守区, 明确 T-DNA 片段的插入区域。对于同时获得两侧侧翼序列的转化子,分析转化子的识别位点。提取识别 位点上下游各 18 nt 的序列,分析各位点的 GC 含量并与基因组序列进行比较。

2 结果与分析

2.1 转化子插入位点侧翼序列的分离 经过3轮扩增反应,30个转化子都获得了1个以上扩增产物条带,其中共有19个转化子Tn5转座子插入两侧方向都获得了条带,11个转化子单侧方向获得了条带。共49个方向的序列中,经常出现单个插入方向出现多个产物条带的现象(图1),有37个插入方向获得了1 个产物条带 8个插入方向获得了2个产物条带 4 个插入方向获得了3 个产物条带。共计65 个产物条带,回收测序。

M 1-1 1-2 2-1 2-2 3-1 3-2 4-1 4-2 5-1 5-2 6-1 6-2 7-1 7-2

图 1 部分转化子 hiTail-PCR 的第 1 轮和第 2 轮扩增产物电泳检测

M: DL2000; 1-4 2-4 3-4 4-4 5-4 ,6-4 ,7-4: 分别是转化子 GX11-6945 ,GX11-4107 ,GX11-6319 ,GX11-8261 ,GX11-6388 , GX11-6395 ,GX11-6348 的 hiTail-PCR 第1轮扩增产物; 1-2 2-2 3-2 4-2 5-2 6-2 ,7-2: hiTail-PCR 第2轮扩增产物。

Fig. 1 Electrophoresis analysis of the first and second hiTail-PCR products of transformants

M: DL2000; 1-1 2-1 3-1 4-1 5-1 6-1 7-1: The primary hiTail-PCR products of transformants GX11-6945, GX11-107, GX11-6319, GX11-8261, GX11-6388, GX11-6395, GX11-6348; 1-2 2-2 3-2 4-2 5-2 6-2 7-2: The secondary hiTail-PCR products of transformants

测序结果的长度在 150~1 200 bp 之间 将测序结果与 GX11 基因组序列进行比对分析,共获得 39 个 T-DNA 插入位点左侧侧翼序列 25 个右侧侧翼序列,且同源性均高于 96%。有 3 个测序结果发现为空载 体,有1 个测序结果在 GX11 基因组序列中没有比对到同源序列。最终结果统计,19 个转化子成功获得 了两侧侧翼序列,10个转化子获得了单侧侧翼序列,1个转化子的侧翼序列在基因组序列中未比对到同 源序列。分析比对结果发现,单侧插入方向出现2~3条产物条带的时候,均为同样的插入位置,可能是 简并引物(LAD1-1~LAD1-4)在基因组序列上有多个结合位点所致。

2.2 Xam 转化子 T-DNA 侧翼序列分析 有研究表明 Tn5 转座子的插入与插入位点的 GC 含量有 关^[18]。分析插入位点上下游各 500 bp 碱基的 GC 含量(表 1) 结果显示 插入位点在 GC 含量为 49% ~50% 的区域最多 ,占 34.48% ,GC 含量低于 47% 的区域占 13.79% ,GC 含量为 47% ~ 48% 的区域占 10.34% ,GC 含量为 48% ~49% 的区域占 20.69% ,GC 含量为 50% ~51% 的区域占 13.79% ,GC 含量高于 51% 的区域占 6.90%。

本实验定位的 29 个转化子插入位点中,有 24 个转化子的插入位点在不同预测基因的编码区,占所有已知插入位点转化子的 82.8%,这说明 Tn5 转座子的插入位点可能更偏向于编码区。GX11-6388,GX11-6348,GX11-7301和 GX11-6401的插入位点都是不同预测基因的起始密码子前 24~160 bp 处,可能是插入在启动子区域。GX11-7622 插入位点是预测基因 XANwfvDGL000109 和 XANwfvDGL000110 终止密码子之间。

表1 29个 hiTail-PCR 扩增的侧翼序列在细菌性枯萎病菌株 GX11 基因组上的位置

Tab. 1 Locations of 29 flanking sequences in genome of Xanthomonas axonopodis pv. Manihotix

转化子 Transformants	同源性(上游/ 下游) Identity (Upstream/ downstream)	插入方向 Orientation of insertion	插入位点 GC含量GC content of insertion site	预测基因功能 Prediction of gene function	插入位置 Location of insert
GX11-6945	99% /96%	反向 (Reverse)	48.60%	烷基氢化过氧化酶 Alkylhydroperoxidase	编码区烷基氢化过氧化酶 Ah- pD 家族保守结构域 Alkylhydroperoxidase AhpD fam- ily core domain
GX11-1796	98% /99%	反向 (Reverse)	48.70%	硝酸盐转运底物结合蛋白 Nitrate ABC transporter sub- strate-binding protein	编码区 Coding region
GX11 <i>-</i> 7622	99% /100%	同向 (Forward)	45.30%	乙基叔丁基醚降解蛋白质 EthD Ethyl tert-butyl ether degradation protein EthD	预测基因 XANwfvDGL000109 和 XANwfvDGL000110 之间 Between the predicted genes XANwfvDGL000109 and XANw- fvDGL000110
GX11-7408	99% /100%	同向 (Forward)	50.90%	庚二酰[酰基载体蛋白]甲 基酯酯酶 Pimeloyl-[acyl-carrier pro- tein] methyl ester esterase	编码区硫酯酶结构域 Thioesterase domain
GX11-8291	100% /96%	同向 (Forward)	49.30%	未知蛋白 Hypothetical protein	编码区 Coding region
GX11-1107	100% /99%	同向 (Forward)	49.20%	核糖核酸外切酶 RRibonuclease R	编码区核糖体类 S1 RNA 结合 蛋白结构域 S1 RNA binding domain 编码区类 SCP 细胞处蛋白结
GX11-6319	97% /100%	反向 (Reverse)	49.70%	未知蛋白 Hypothetical protein	编词达文 501 编起开量首组 构域 SCP-like extracellular protein
GX11-8261	99% /99%	反向 (Reverse)	49.80%	II 型分泌系统蛋白 GSPD Type II secretion system pro- tein GspD	编码区细菌 II 型和 III 型分泌系 统蛋白结构域 Bacterial type II/III secretion system short domain

续表 1 Continued Tab. 1					
转化子 Transformants	同源性(上游/ 下游) Identity (Upstream/ downstream)	插入方向 Orientation of insertion	插入位点 GC含量GC content of insertion site	预测基因功能 Prediction of gene function	插入位置 Location of insert
GX11-6358	100% /100%	同向 (Forward)	47.60%	葡萄糖磷酸胸苷酰转移酶 Glucose – 1 – phosphate thy– midylyltransferase	编码区葡萄糖磷酸胸苷酰转移 酶结构域 Glucose – 1 – phos- phate thymidylyltransferase do- main
GX11-9607	99% /100%	同向 (Forward)	47.40%	乙酰鸟氨酸氨甲酰转移酶 Scetylornithine carbamoyl– transferase	编码区 ASP/ORN 结合结构域 ASP/ORN binding domain
GX11- 9 951	100% /100%	同向 (Forward)	51.00%	磷酸烯醇丙酮酸合酶 Phosphoenolpyruvate syn- thase	编码区磷酸烯醇丙酮酸合酶结 构域 Phosphoenolpyruvate syn- thase domain
GX11 – 6202	98% /100%	反向 (Reverse)	48.80%	亚硝酸还原酶 Nitrite reductase large sub- unit	编码区吡啶二硫核苷酸氧化还 原酶结构域 Pyridine nucleotide – disulphide oxidoreductase do– main
-GX11-2709	98% /100%	同向 (Forward)	49.10%	烟酸核苷酸腺苷转移酶 Nicotinamide nucleotide adenylyltransferase	编码区烟酸核苷 酸腺苷转移 酶结构域 Nicotinamide nucleo- tide adenylyltransferase domain
GX11-6388	99% /99%	同向 (Forward)	49.10%	核糖体沉默因子 RsfS Ribosome silencing factor RsfS	起始密码子前 160 bp 160 bp before initiation codon
GX11-6355	100% /100%	反向 (Reverse)	50.60%	胱硫醚 β -合酶 Cystathionine beta-synthase	编码区半胱氨酸合成酶 A 结 构域 Cysteine synthase A do- main
GX11-8282	99% /100%	反向 (Reverse)	45.90%	胱硫醚β-裂解酶 Cystathionine beta-lyase	编码区胱硫醚β-裂解酶结构 域 Cystathionine beta-lyase do- main
GX11-6395	96% /100%	反向 (Reverse)	50.40%	接合转移蛋白 TraJ Conjugal transfer pro– tein TraJ	编码区 IV 型分泌系统 Vir8 蛋 白结构域 Type IV secretion sys- tem protein VirB8 domain
GX11-9341	100% /100%	同向 (Forward)	47.90%	未知蛋白 Hypothetical protein	编码区 Coding region
GX11-6348	100% /96%	反向 (Reverse)	48.50%	未知蛋白 Hypothetical protein	起始密码子前 24 bp 24 bp before initiation codon
GX11-8227	100%		45.10%	转座酶 Transposase	编码区 Coding region
GX11-8201	99%		48.20%	未知蛋白 Hypothetical protein	编码区 Coding region
GX11-4301	99%		49.40%	NmrA 家族蛋白 NmrA family protein	编码区 Coding region
GX11-6801	99%		48.10%	未知蛋白 Hypothetical protein	编码区 Coding region
GX11-7301	98%		43.70%	未知蛋白 Hypothetical protein	起始密码子前 48 bp 48 bp before initiation codon
GX11-8101	99%		53.40%	纤维素酶 Cellulase	编码区纤维素酶结构域 Cellulase domain
GX11-7812	100%		49.90%	未知蛋白 Hypothetical protein	编码区 Coding region

续表1 Continued Tab.1					
转化子 Transformants	同源性(上游/ 下游) Identity (Upstream/ downstream)	插入方向 Orientation of insertion	插入位点 GC含量GC content of insertion site	预测基因功能 Prediction of gene function	插入位置 Location of insert
GX11-1801	99%		49.30%	IV 型分泌系统 VirB4 Type IV secretion system protein VirB4	编码区 IV 型分泌系统 ATP 酶 VirB4 结构域 Type IV secretion system protein VirB4 domain
GX11-8301	100%		51.80%	未知蛋白 Hypothetical protein	编码区 Coding region
GX11-6401	99%		50.00%	未知蛋白 Hypothetical protein	起始密码子前 111 bp 111 bp before initiation codon

将 29 个转化子中 Tn5 转座子插入位点所在的基因在 NCBI 进行 BLAST 比对,有 19 个基因已知预测 功能,10 个基因为未知蛋白。将 29 个基因编码蛋白进行 BLASTp 比对后发现 24 个插入位点在预测基因 编码区的转化子中,有 15 个转座子插入在基因的保守结构域内。

为研究 Tn5 转座子的插入方向与插入基因方向有无相关性,对 19 个获得两侧侧翼序列的转化子进 行分析,有 10 个为同向插入 9 个为反向插入,所以两者没有明显关系。

为了分析 Tn5 转座子的插入是否与9 bp 的正向重复序列的碱基及其上下游的碱基序列相关 统计19 个获得两侧侧翼序列的转化子的9 bp 正向重复序列及其上下游各 18 bp 的共 45 bp 碱基序列(表 2)。统 计发现 在 9 bp 正向重复序列的首位和末位 出现碱基 G 和碱基 C 的概率分别达到 58% 和 50% 在 4 位 出现 T/C 的概率为 88% 在 5 位出现 A/T 的概率为 63% 在 6 位出现 A/G 的概率为 63%。正向重复序 列的上游 48 bp 和下游 18 bp 碱基序列中 在 5 位和 11 位出现碱基 G 概率分别达到 67% 和 61% (1 位为 正向重复序列的第 1 个碱基) 在 2 位出现碱基 C 的概率达到 63%。比较 G/C 出现概率发现 45 41 9, -5 4 2 1 3 8 9 11 16 17 19 21 23 26 位出现 G/C 的概率均大于 71%。这些碱基的特异性可能与转 座酶的识别作用相关。

表 2 19 个转化子形成的 9 bp 正向重复序列及其上下游 18 bp 碱基

Tab. 2 The 9 bp repetitive sequences and its upstream and downstream 18 bp bases of 19 transformants

转化子			下游 18 bp 序列
Transformants	18 bp upstream sequence	9 bp repeat sequence	18 bp downstream sequence
GX11-6945	CAGCTATCACGTGGCTCA	GTGCAAGGA	AGCCGGCGTGAGCCGGGA
GX11-1107	GTGCATGTCACGCAGCTG	CCGCAGGAC	TATTACCAGTTCGATCCG
GX11-1796	AAAAATTCCGCAAGGACA	ATCCCAAGA	CCTACCGCGCGTTTGTCG
GX11-6319	ACATCCGTCGGCTGCACG	GTCTGGAGG	CGGTCGACGACGACCCGG
GX11-7408	GGGCGGGCTGTTTGCGTT	GCATGCGGC	CGCCACCCTGCCGCAGGT
GX11-8261	AGACACAGAATACGGATC	GTCGTGAGG	TTATTGTCCTTATCACGC
GX11-2709	TGCCGCCCCGGTGGCCG	GAATGATCC	AGCGCGAAGGCCTGTACC
GX11-9607	GCCCGACGCCGGACTACA	TCCTGGATC	AGCGCTACATGGACTGGG
GX11-9341	GCCGCTGCGCGTTCGTCT	GTCCAAGGG	GCACCAGGCGCGTAACAA
GX11-8291	AGGCATCGCCCATGCTGG	TGCTGGAAC	TGGACCGCAGCGGCCTGC
GX11-6395	GTTGAGATTGTCAGCGTT	GTTCCTAAT	GGCGATGGCGTCGGCACG
GX11-7622	GCATGCGCCGCGCGCCCA	ATCCACCGA	CGCCGGCCATCGGGATCC
GX11-8282	GCGTGCGGATTTGGAGCG	GGCGCTGGG	TGAGGGGACTCGCTAATC
GX11-6355	CGCAGCAGAAGGGCTACC	AGCTGATCC	TGGTGGTTCCGGACAAGA
GX11-9951	CCTGTGGTTGCATGAGCT	ACGCCTGGC	CGACCTGGCCCGCGTAGG
GX11-6388	GGTACAGGCCTTCGCGCT	GGATCATTC	CGGCCACCGGGGGGGGGGA
GX11-6358	AGCCGCTGGGACGCGGGT	ATGCATGGC	TGGATACCGGAACGCACC
GX11-6348	AAAGAGATGCATGCTGCA	GGATACGAG	GTCTCTACAGAACAAGCG
GX11-6202	ATCGCGATATCCAGGACA	CGCGCACCA	TGATCGATACCGCGCGTA

3 讨 论

笔者采用 hiTail-PCR 对 30 个转化子的 Tn5 转座子插入位点侧翼序列进行分析 ,从而对 Tn5 转座子的 插入模式进行初步分析。对获得的 19 个转化子两侧侧翼序列和 10 个转化子的单侧侧翼序列进行分析统 计后发现 ,Tn5 转座子倾向于插入低 GC 含量区 ,当 GC 含量为 49% ~50% 时插入数最多。笔者获得的 19 个转化子的两侧侧翼序列经过分析后均发现产生了 9 bp 的正向重复序列的情况。而且 ,没有发现转座子 的插入方向具有偏好性。29 个转化子中 ,有 24 个插入位点是在预测基因的编码区内 ,说明转座子的插入 可能偏向于插入编码区。对研究实验结果进行统计分析发现 9 bp 正向重复序列的上游-18 bp 和下游 18 bp 碱基的-5 ,-2 ,1 *4 5 6 9* ,11 位可能与转座酶的结合具有相关性。孙其红^[19] 构建了水稻白叶枯病菌的 Tn5 突变体库 ,分析其插入模式发现 ,在 Tn5 转座的过程中 ,会在插入位点产生 9 bp 的正向重复序列 ,这 与本实验结果相同。唐江涛^[18] 通过 Tn5gusA (Tn5gusA 和 Tn5 具有相同的转座机理和转座热点) 构建野 油菜黄单胞菌的突变体库 ,并通过生物信息学的方法分析其插入规律 ,发现 Tn5gusA5 倾向于低 GC 含量 区域 ,在 GC 含量为 50% 左右时插入密度最高 ,而且插入位点的把序列也有一定的特异性 ,本研究中 GC 含量为 49% ~50% 的区域的插入密度最高 ,与其结果相符。唐江涛研究^[18] 也发现 ,在 9 bp 正向重复序列 的上下游 18 bp 碱基的-5 ,-2 ,1 *4 5 6 9* ,11 ,14 位碱基与转座酶的结合相关。本研究结果为更好地利用 tn5 转座子进行病原细菌致病分子机理研究提供了依据。

参考文献:

- [1] 黄洁,周建国.木薯间套作与高效利用技术[M].海口:海南出版社 2015.
- [2] 贾晶霞,李雷霞.世界及中国木薯生产概况[J].农业工程 2015(5):124-126,129.
- [3] 陈丽珍, 叶剑秋. 我国木薯加工业的发展现状与展望[J]. 园艺与种苗 2011(3):87-90.
- [4] 盘欢. 亚洲 11 国木薯生产概况 [J]. 广西热带农业 2009(5): 29-31.
- [5] 农业部发展南亚热带作物办公室. 2014 年 12 月热作产品市场动态 [EB/OL]. http://www.troagri.com.cn/Articles. php? url = BTwKZQFuVz5VaFBhAGdRZQ%3D%3D,2015-01-16.
- [6] 国务院. 可再生能源中长期发展规划[R],2007.
- [7] Lozano J C , Booth R H. Disease of cassava (Manihot esculenta Crantz) [J]. Pans , 1974(20): 30 54.
- [8] 李超萍 时涛 刘先宝 等. 国内木薯病害普查及细菌性萎蔫病安全性评估[J]. 热带作物学报 2011(1):116-121.
- [9] Rebecca Bart, Megan Cohn, Andrew Kassen, et al. High-throughput genomic sequencing of cassava bacterial blight strains identifies conserved effectors to target for durable resistance [J]. Proceedings of the National Academy of sciences of the United States of America 2012 ,109(28): 1972 – 1979
- [10] Mario L Arrieta-Ortiz, Luis M Rodr'guez-R, A' lvaro L. Pe' rez-QuinteroMireille Harimalala, et al. Genomic survey of pathogenicity determinants and VNTR markers in the cassava bacterial pathogen Xanthomonas axonopodis pv. Manihotis strain CIO151 [J]. PLOS ONE, 2013, 8(11): e79704.
- [11] Stéphanie Bolot, Alejandra Munoz Bodnar, Sébastien Cunna, et al. Draft Genome sequence of the Xanthomonas cassavae type strain CFBP 4642 [J]. Genome, 2013, 1(4): e00679 – 13.
- [12] Castiblanco L F, Gil J, Rojas A, et al. TALE1 from Xanthomonas axonopodis pv. manihotis acts as a transcriptional activator in plant cells and is important for pathogenicity in cassava plants [J]. Molecular Plant Pathology, 2013, 14(1):84-95.
- [13] 陈江莎. 木薯地毯草黄单胞菌 Tn5 转座子插入突变体库的建立及其分子分析 [D]. 海口: 海南大学 2013.
- [14] 时涛,李超萍,刘先宝,等. 木薯细菌性枯萎病菌 *hrpG* 基因突变体的获得[J]. 热带作物学报 2013(6):1139-1143. [15] 方中达. 植病研究方法[M]. 3 版.北京:中国农业出版社,1998.
- [16] 丁小云, 耿俊丽, 魏成熙. 不同破壁方法对大肠杆菌 DNA 提取的影响[J]. 贵州农业科学 2010(4):149-150.
- [17] Liu Y G. , Chen Y. High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences [J]. BioTechniques, 2007, 43(5): 649-656.

[18] 唐江涛. 细菌转座子 Tn5gusA5 在野油菜黄单胞菌 8004 中转座规律分析及生物学验证 [D]. 南宁: 广西大学, 2003.

[19] 孙其红. 水稻白叶枯菌(Xanthomonas oryzae pv. oryzae) 致病性的功能基因组学分析 [D]. 北京: 中国科学院微生物研 究所, 2004.

T-DNA Insertion Patterns for the Genome of Xanthomonas axonopodis pv. manihotis Transformants

ZHANG Changzheng^{1,2}, LIU Jinping¹, SHI Tao², LI Chaoping², CHEN Yipeng², HUANG Guixiu²

(1. College of Agronomy, Hainan University, Haikou, Hainan 570228; 2. Environment and Plant Protection Institute,

CATAS , Haikou , Hainan 571101 , China)

Abstract: Using high-efficiency thermal asymmetric interlaced PCR (hiTAIL-PCR), 64 specific fragments of *Xanthomonas axonopodis* pv. *Manihotis* (Xam) genomic DNA flanked on the T-DNA were successfully amplified from 30 randomly-picked Xam transformants. Nineteen transformants had fragments flanked on both borders of T-DNA, and 11 contained fragments flanked on the left border of T-DNA. Analysis showed that the insertion sites were mainly found in the area with low GC content, especially the area with the GC content ranging between 49% -50%; Tn5 transposon tended to be inserted into coding region; Tn5 transposon insertion formed a 9 bp direct repetitive sequence and had no preference in orientation. Among the upstream and downstream of the 9 bp direct repetitive sequence , the sites of -5, -2, 1, 4, 5, 6, 9 and 11 might play a key role in the transposase recognition.

Keywords: Manihot esculenta; bacterial blight; T-DNA insertion pattern