第5卷第1期 2014年3月 Vol. 5 No. 1 Mar. 2014

文章编号: 1674 - 7054(2014) 01 - 0048 - 04

有棱丝瓜海大1号×海大2号的杂种优势

林师森 成善汉 尚 辰

(热带作物种质资源保护与开发利用教育部重点实验室/海南大学 园艺园林学院,海南 海口 570228)

摘 要: 以有棱丝瓜海大 1 号、海大 2 号及其正反交品种为材料。研究其主要性状的遗传规律,揭示其杂种优势情况,为丝瓜的育种提供理论参考。结果表明: 海大 1 号和海大 2 号杂交后代具有杂种优势这一遗传特性,杂种 F_1 代长势更旺盛 果实的商品性状好 抗病性稍强 尤其是正交 F_1 代的产量高达 $67~534.5~{\rm kg} \cdot {\rm hm}^{-2}$ 优于其亲本 极具市场竞争力。

关键词: 有棱丝瓜; 性状; 杂种优势

中图分类号: S 642.4 文献标志码: A

丝瓜(Luffa spp.) 系葫芦科丝瓜属一年生攀援草本 ,包括普通丝瓜 [Luffa cylindrical (L.) Roem.]和有棱丝瓜 [Luffa acutangula (L.) Roxb.]2 个栽培种。原产于东印度 ,主要分布于热带、亚热带的亚洲各地 ,我国南北各地均有栽培 ,华南地区的栽培类型以有棱丝瓜为主 ,其他地区则以普通丝瓜为主 ,是我国主要的瓜类蔬菜 [1]。 丝瓜不仅营养丰富 ,具有清热化痰、凉血解毒等保健作用 ,而且耐热、耐涝性强 ,是夏秋季节非常好的渡淡蔬菜 ,近年来需求量不断增大 ,栽培面积也迅速扩大。有棱丝瓜是广东名优特产蔬菜之一 海南四季也均有大面积的栽培 ,其产品不但内销 ,而且大量出口港澳市场 ,是出口创汇的主要蔬菜品种之一 [2]。由于不同地区人们的消费习惯不同 ,有棱丝瓜的瓜形、皮色、长度、发育速度和产量等成为丝瓜生产的重要因素 [3]。 但丝瓜育种起步较晚 ,虽培育了一些优良新品种 ,但在丝瓜育种基础理论方面研究较少 ,尤其是主要性状的遗传效应研究报道不多。笔者对有棱丝瓜果实性状、产量相关性状和品质性状等方面的遗传规律进行了初步分析 ,揭示各主要性状的遗传效应 ,旨在为有效开展有棱丝瓜的品质育种提供理论参考。

1 材料与方法

供试亲本材料为 2 个纯合的自交系: 海大 1 号有棱丝瓜 10 棱 10 棱 10 皮色为墨绿色 10 是细长筒状; 海大 1 号 有棱丝瓜 10 棱 10 棱 10 皮色为浅绿带斑白色(麻皮) 10 层短粗筒状。用自交系海大 1 号作母本 海大 10 号作父本 10 进行正交和反交 10 获得正交和反交 10 代材料。

试验在海南大学农学园进行 2010-02-13 播种 ,采用营养杯育苗。小区长 1.5 m ,宽 1.2 m (包沟),面积为 1.8 m² ,每畦种 2 行,每小区栽种 24 株。栽植前,施 225 kg • hm² 三元复合肥作为基肥,覆盖地膜,利用膜下滴灌技术进行灌水,盖土起畦后进行定植,在植株开始抽蔓 2~3 条时,垄上搭架,然后进行常规的田间管理,定期浇水施肥,喷施杀虫剂。但在进入盛收期则应少施或不施杀虫剂,以便鉴定品种的抗病能力。试验设 3 次重复,采用随机区组排列。

在生长及挂果盛期对每个品种随机抽取 5 个植株样本 ,测定叶长、叶宽、分枝数等 4 个植物学性状。在采收期 ,每个品种随机抽取 10 个瓜样本 ,测定瓜色、瓜长、单瓜重、瓜横径、皮厚、棱长等 6 个果实商品性状。在采收盛期后对所有小区进行病害的调查统计 ,调查时 ,每个品种随机抽取 10 株 ,计算其病情指数 ,测定每个品种对霜霉病和丝瓜疫病的抗性强弱。丝瓜以嫩瓜供食 ,应及时采收(一般开花后 6~9 d 即可

收稿日期: 2014-01-10

作者简介: 林师森(1956 –) 男 副教授. 研究方向: 蔬菜遗传育种. E-mail: linshisen@ 126. com

采收) 在整个试验过程中对海大 1 号、海大 2 号及其正、反交 F_1 代进行产量统计 [4] 。试验数据采用 SAS 软件和 Excel 2003 进行处理。在相关性状处理中,应用的公式如下:

根据等质量对等面积计算叶面积 $S_A: M_A = S_B: M_B$,

式中 S_A 代表选取的完整纸张的面积 M_A 代表完整纸张的质量; S_B 代表调查叶片的面积 M_B 代表剪成叶片相等形状纸张的面积。

根据产量计算超亲优势 $^{[5]}$ 超亲优势 $^{[5]}$ 和亲优势 $^{[5]}$ 和亲优势 $^{[5]}$ 和

式中 X 表示 F_1 代的产量值 HP 表示大值亲本的产量值。

参照王建设等[6-8]的病情分级标准估算出各品种的平均病情指数。

病情指数 = Σ (病级代表值×该级发病叶片数)/(最高级代表值×调查总叶片数)×100

2 结果与分析

2.1 植物学性状的遗传特点及分析 从表 1 可以看出 试验中成熟的有棱丝瓜叶片大小均在 $0.03 \sim 0.06$ m^2 之间 F_1 代的叶长、叶宽及叶面积和父本、母本叶长、叶宽及叶面积均无显著性差异 ,叶的长宽和面积为显性遗传。海大 1 号的分枝数比海大 2 号的多 , F_1 代分枝性状则为居于双亲性状的中间型,属于不完全显性遗传,并没有出现质量性状般的显隐性关系。 从茎、叶和分枝习性这 3 种植物学性状总体评估,正、反交 F_1 代两者相比 均有一定的杂种优势,但就整体而言,正交 F_1 代更符合杂种优势的遗传特性。

表 1 有棱丝瓜各品种叶、茎、分枝性的遗传特点(新复极差测验, P<0.05)

Tab. 1 The genetic characteristics of different varieties of angled luffa in leaf , stem and branching

(new multiple range test , P < 0.05)

品种名称 Variety	叶长/cm Leaf length	叶宽/cm Leaf width	叶面积/m² Leaf area	分枝数/条 Branch number
海大 1 号 Haida 1	27. 09a	24. 39a	0.043a	5
海大 2 号 Haida 2	27.70a	24. 83a	0.043a	2
正交 F_1 代 Direct F_1	27.57a	24. 89a	0.047a	4
反交 F_1 代 Reciprocal F_1	27. 10a	24.46a	0.044a	4

注: 叶的调查在生长盛期进行 海小区取 5 片成熟叶测定

Note: Leaf observation was carried out at the peak growth stage , and 5 mature leaves were collected for measurement from the plants each plot

- 2.2 果实商品性状的遗传特点及分析 从表 2 可以看出,有棱丝瓜各品种的瓜长之间无显著差异,虽未达到超亲优势,但仍可看出 F_1 代表现出了一定的杂种优势,即表明其主基因具有较大的加性效应。海大 1 号和海大 2 号两亲本之间,除了棱宽无显著差异外,单瓜重、瓜肉直径均有极显著差异,而 F_1 代的相对性状至少与其亲本的相对性状之一无显著差异。另外,还可推断出杂种 F_1 代的性状表现是双亲性状的中间型,即为不完全显性的遗传。由于各地的消费习惯大不相同,对有棱丝瓜的要求亦不同,故每种性状均有其各自的优势。根据遗传规律,这种不完全显性的表现型和其基因型是一致的 $^{[14]}$ 。而另一直接影响植株产量的性状——座果率则具有极显著差异,正交 F_1 代的座果量明显高于亲本,显著表现出这一性状的超亲优势。而就瓜肉直径而言, F_1 代均倾向于海大 1 号,为隐性遗传。因此,根据果实瓜色和瓜形的表现型,可以明确推断出 F_1 代的性状均倾向于母本。
- 2.3 抗病性状的遗传特点及分析 从表 3 可看出 海大 1 号和海大 2 号两品种在抗丝瓜疫病和抗霜霉病上均有极显著差异。在抗疫病方面 海大 1 号的抗性最弱 海大 2 号的抗性最强 F_1 代的抗性和父本的抗性无显著差异; 在抗霜霉病方面 海大 1 号的抗性最强 海大 2 号的抗性最弱 F_1 代的抗性也很弱 即有棱丝瓜 F_1 代在抗霜霉病这一性状上表现为海大 2 号的性状 由此可见 抗霜霉病属于隐性基因遗传。

表 2 有棱丝瓜果实的商品性状的差异显著性(新复极差测验 、P<0.05)

Tab. 2 Significance of difference in fruit commodity traits (new multiple range test, P < 0.05)

————— 品种名称	单瓜重/g	瓜数/个	瓜长/cm	瓜肉直径/cm	瓜皮厚度/cm	棱宽/cm		瓜形	 瓜色
ロロイザ 在 イル Variety	Fruit	Fruit	Fruit	Flesh	Rind	Ridge	Number	Fruit	Fruit
variety	weight/g	number	length/cm	diameter/cm	thickness/cm	width/cm	of ridge	shape	color
海大 1 号 Haida 1	323.45c	35	51.11a	4.13b	0.18c	0.40ba	10	细长筒状 Elongated tubular	墨绿色 Dark green
海大 2 号 Haida 2	634.90a	17	50. 89a	5.99a	0.39a	0.49a	10	短粗筒状 Stubby , cylindrical	赤麻色 Red linen
正交 F_1 代 Direct F_1	303.79c	40	49.08a	4.59b	0.26bc	0.34b	10	细长筒状 Elongated tubular	墨绿色 Dark green
反交 F ₁ 代 Reciprocal F ₁	458.86b	19	54. 09a	4.64b	0. 34a	0.40ba	10	短粗筒状 Stubby , cylindrical	赤麻色 Red linen

注: 表中数据为随机抽取 10 个商品作为样本进行测定的结果

Note: Data in the table are from 10 randomly selected fruit samples

表 3 有棱丝瓜各品种的抗病特点差异显著性(新复极差测验 .P < 0.05)

Tab. 3 Significance of difference in disease-tolerance trait among varieties of angled luffa (the new multiple range test , P < 0.05)

口4h <i>欠4h V</i> · ·	病情平均指数 Average disease index			
品种名称 Variety —	疫病 Phytophthora	霜霉病 Downy mildew		
海大 1 号 Haida 1	39.0a	44.4b		
海大 2 号 Haida 2	25.3b	60. 1a		
正交 F_1 代 Direct F_1	27.9b	56.3a		
反交 F ₁ 代 Reciprocal F ₁	34.4a	55.7a		

注: 病情指数的调查在植株盛收后期进行

Note: The investigation of disease index was carried out after the peak harvest stage

2.4 产量的遗传性状及分析 由表 4 可以看出 ,正交 F_1 代产量遗传性状为超亲遗传 ,其杂交优势明显 (超亲值为 7.33%)。进一步可推断出 ,有棱丝瓜正交 F_1 代在总产量性状上存在显著的杂种优势 ,而反交 F_1 代则表现为较明显的负优势现象。反交 F_1 代的负优势 ,并不代表其杂交衰退 ,有可能是环境的适应范围较小 ,病虫害对其果实的影响较大 ,从而生长势较弱 ,产量受严重影响导致的。但是 ,可以明显地看出 ,正交 F_1 代的超亲值比较高 ,说明海大 1 号、海大 2 号的产量性状杂种利用的潜力是存在的。

表 4 有棱丝瓜亲本与 F₁ 代的产量比较

Tab. 4 Comparison of yield among parents and F₁

品种名称 Variety	总产量 Total yield/kg	折合产量 Equivalent yield/(kg • hm -2)
海大1号 Haida 1	11.32	62 920.5
海大 2 号 Haida 2	10.79	59 974.5
正交 F_1 代 Direct F_1	12.15	67 534.5
反交 F_1 代 Reciprocal F_1	8.72	48 468.0

3 讨论

本研究结果表明,正交 F_1 代在整体上仍表现出超亲的杂种优势。在植物学性状方面,无论是叶长、叶宽、叶面积、茎或分枝性 F_1 代均表现出杂种优势。 F_1 代叶面积虽与其亲本间无显著差异,但仍有利于植株进行光合作用,光合效能较高;而其茎的长势遗传则为完全显性遗传;分枝性状属于不完全显性遗传,未出现质量性状般的显隐性关系,即为数量性状的杂种优势。 另外,从茎、叶和分枝习性这 3 种植物学性状来总体评估 F_1 代较大程度地遗传了母本的基因,而正交 F_1 代更符合杂种优势的遗传特性。在果实方面,虽然父母本之间存在着显著差异,但其杂种 F_1 代的性状表现多为双亲性状的中间型,即为不完全显性遗传,根据遗传规律,这种不完全显性的表现型和其基因型是一致的。 就单瓜重来看,海大 2 号的极高,但其总产量反而较低,产生这一状况的因素,除了与其本身的座果率较低有关外,还与其对病害的抵抗能力较弱有极大的关系。 其中霜霉病对有棱丝瓜的危害最严重,而 F_1 代在抗霜霉病这一性状上表现为海大2 号的性状,即霜霉病是隐性基因遗传。总之 F_1 代在抗逆性上较其亲本具有更多的优势。在产量方面, F_1 代的产量都较高,但正交 F_1 代的产量(67 534.5 kg • hm $^{-2}$)超过海大 1 号 (62 920.5 kg • hm $^{-2}$) 和海大 2 号 (59 974.5 kg • hm $^{-2}$) 表现为超亲遗传。

总体来看,正交 F_1 代各性状表现均优于反交 F_1 代,且超过亲本,在生产和实际应用中,值得加以利用和推广。但在遗传方面,子代和亲本的性状表达仍是一种复杂的遗传关系。

参考文献:

- [1] 舒迎澜. 主要瓜类蔬菜栽培简史[J]. 中国农史 ,1998 ,17(3):94-99.
- [2] 陈碧琳 邱汉林 ,叶晓青. 岭南名优蔬菜栽培技术 [M]. 广州: 科学普及出版社广州分社 ,1989.
- [3] 林明宝 林师森. 有棱丝瓜果长遗传效应的初步研究[J]. 华南农业大学学报,2004(4):8-9.
- [4] 浙江农业大学. 遗传学[M]. 第2版. 北京: 中国农业出版社 ,1989.
- [5] 盖钧镒. 试验统计方法 [M]. 第2版. 北京: 中国农业出版社 2000.
- [6] 王建设 陈杭. 甜瓜抗白粉病鉴定[J]. 华北农学报 ,2000 ,15(1):125 128.
- [7] 范海延 李宝聚 呂春茂 等. 葡聚六糖在黄瓜抗霜霉病的研究[J]. 植物保护,2003 29(1):14-16.
- [8] 张玉勋 焦自高. 厚皮甜瓜白粉病苗期接种方法及抗性鉴定 [J]. 北方园艺 ,2002(1):48.

Heterosis in Crosses Between Varieties Haida 1 and 2 of Angled Luffa (*Luffa acutangula* L.)

LIN Shisen, CHENG Shanhan, SHANG Chen

(Ministry of Education Key Laboratory of Protection , Development and Utilization of Tropical Crop Germplasm Resources College of Horticulture and Landscaping , Hainan University , Haikou 570228 , China)

Abstract: Angled luffa ($Luffa\ acutangula\ L$.) is a major vegetable gourd in South China. Two angled luffa varieties Haida 1 and 2 and the progenies of their reciprocal cross were planted in the garden to evaluate the inheritance of their major traits and their heterosis with a view to provide theoretical reference for heterosis breeding in angled luffa. The results showed that the first filial generation of the cross between Haida 1 and Haida 2 exhibited a genetic trait of heterosis. The F_1 progenies grew more vigorous and slightly highly tolerant to diseases and their fruits sold well in the market. The F_1 progeny of the direct cross between Haida 1 and 2 yielded 67 534.5 kg • hm⁻², higher than its parents, and hence is very competitive in the market.

Key words: Luffa acutangula; trait; heterosis