文章编号:1674-7054(2011)01-0035-07

利用单因子和正交设计双重实验方法 优化广藿香 ISSR-PCR 实验体系

曹嵩晓,李娟玲,刘国民,王 艺,戴 景 (海南大学 芳丁茶研究所,海南海口 570228)

摘 要: 为了建立广霍香优化的 ISSR-PCR 反应体系,首先通过单因子试验选定其各影响因子比较适宜的浓度范围,再利用正交试验设计的方法,对影响广藿香 ISSR-PCR 反应的 5 种因素 4 水平进行优化试验。结果表明:广藿香 ISSR-PCR 的优化反应体系最终确定为:在 25 μ L 反应体系中,含 DNA 模板 40 μ ng· Mg²+浓度为 2.5 μ mmol·L⁻¹,引物浓度为 0.3 μ mol·L⁻¹, μ DNA 聚合酶用量为 1.5 U, dNTPs 浓度为 150 μ mol·L⁻¹。 PCR 扩增程序为:94 μ 预变性 5 μ min,然后按 94 μ 变性 45 s,52.7 μ 退火 45 s,72 μ 延伸 90 s,进行 40 个循环,最后 72 μ 延伸 7 μ min,4 μ 保存。

关键词:广藿香;ISSR-PCR;单因子试验;正交设计

中图分类号: S 567.21

文献标志码: A

广藿香[Pogostemon cablin (Blanco) Benth]为唇形科刺蕊草属植物,原产于菲律宾、马来西亚、印度等国家,后传入我国。广藿香全草入药,味辛,性微温,具有芳香化浊、开胃止呕、发表解暑等功效,是我国常用的中药之一。《中华人民共和国药典》规定为著名国家中药保护品种"藿香正气丸(胶囊、水)"和"抗病毒口服液"的重要原料,同时也是其他 30 多种中成药的主要原料^[1]。有关广藿香种质资源鉴定和分类方面,曹柳英等^[2]采用 46 种引物进行 RAPD 分析,筛选出可鉴别广藿香 RAPD 图谱引物 6条,将不同产地的广藿香进行了聚类分析。潘超美等^[3]用从 80 个 RAPD 随机引物中筛选出的 14 个具较高多态性检测能力的引物对 5 个栽培居群的广藿香进行了分析。但应用 ISSR 技术研究广藿香的相关论文未见报道。

所谓 ISSR(Inter-simple sequence repeat,简单序列重复区间),是 Zietkiewicz 等 1994 年创建的一种基于 SSR 的简单重复序列区间扩增多态性分子标记^[4],具有模板需求量少、操作简单、实验成本低、多态性丰富、重复性好等优点^[5]。但由于 ISSR 分子标记是建立在 PCR 反应基础之上的分子标记技术,其反应体系不同可产生不同的结果。为了确保 ISSR 分析结果的可靠性和可重复性,进行 ISSR-RCR 反应体系优化研究是十分必要的。本研究综合运用单因子试验和正交实验 2 种方法,对影响 ISSR 结果的主要影响因子(dNTPs 浓度、Taq DNA 聚合酶用量、模板 DNA 用量、引物浓度、Mg²+浓度)和热循环参数(退火温度、退火时间、循环次数等)进行了优化,建立了一套重复性好、适用于大批量广藿香种质材料 ISSR 分析的优化反应体系,旨在为广藿香种质资源的鉴定和遗传多样性分析提供简便的方法。

1 材料与方法

- 1.1 供试材料 广藿香嫩叶,取自海南大学苦丁茶种质资源圃。
- 1.2 主要试剂与仪器
- 1.2.1 试剂 CTAB(十六烷基三甲基溴化铵)、Tris(三氯氨基甲烷)、EDTA(乙二胺四乙酸)均购自广州 威佳科技有限公司; 所用 ISSR 引物由上海生工生物工程技术服务有限公司合成; DNA Marker(λDNA/

收稿日期: 2011 - 01 - 18

作者简介:曹嵩晓(1985-),男,山东青岛人,海南大学农学院2008级种质资源学专业硕士研究生.

通信作者: 刘国民(1955 -), 男, 湖南祁东人, 教授, 博士, 博士生导师. E-mail: 13005082258@ 163. com

Hind Ⅲ,100 bp plus DNA ladder) 购自中科瑞泰(北京) 生物科技有限公司; *Taq* DNA 聚合酶和 4×dNTP mix 购自上海申能博彩生物科技有限公司。

1.2.2 仪器 离心机,电热恒温水浴锅,移液枪,紫外分光光度计,icyclerTM Thermal Cycle 型 PCR 仪,水平电泳仪,UVP 凝胶成像系统等。

1.3 实验方法

- 1.3.1 广藿香 DNA 的提取 采用李娟玲等^[6]的改良 CTAB 法提取广藿香基因组 DNA,用紫外分光光度 计检测 DNA 浓度和纯度,并采用 w = 0.8% 的琼脂糖凝胶电泳检测 DNA 质量。最后将样品释稀成 20 mg L⁻¹,用于 ISSR 反应体系的优化实验。
- 1.3.2 单因子试验 ISSR 基本反应体系组成为: $10 \times \text{反应 buffer } 2.5 \text{ μL} \cdot \text{MgCl}_2 2.5 \text{ mmol} \cdot \text{L}^{-1} \cdot \text{DNA}$ 模板 40 ng, 引物 $0.4 \text{ μmol} \cdot \text{L}^{-1} \cdot \text{Taq}$ DNA 聚合酶 $2.0 \text{ U} \cdot \text{dNTPs } 200 \text{ μmol} \cdot \text{L}^{-1} \cdot \text{最后用无菌超纯水补足至 } 25 \text{ μL} \cdot \text{ISSR-PCR 基本扩增程序为: } 94 \text{ ℃ 预变性 } 5 \text{ min} \cdot \text{然后按 } 94 \text{ ℃ 变性 } 45 \text{ s.} 52 \text{ ℃ 退火 } 45 \text{ s.} 72 \text{ ℃ 延伸 } 90 \text{ s.} 进行 40 个循环,最后 <math>72 \text{ ℃ 延伸 } 7 \text{ min} \cdot \text{ 根据预实验结果} \cdot \text{选定 UBC} 868 \text{ 为 ISSR 优化引物} \cdot \text{反应体 } \text{系的优化先按单因子梯度设置进行(见表 1)} \cdot \text{即在保持其他因子不变的条件下, 变化单一因子, 筛选比较 适宜的浓度范围。取扩增产物 <math>10 \text{ μL}$ 和 2 μL 的 loading buffer 混匀,点样于 $w = 1.5 \text{ % 的琼脂糖凝胶(含 0.5 \text{ μg} \cdot \text{m L}^{-1}\text{EB})}$ 的上样孔中,以 $100 \text{ bp plus DNA ladder } \text{作为对照分子质量标准} \cdot \text{在 } 0.5 \times \text{TBE 缓冲液 中电压 } 4.5 \text{ V} \cdot \text{cm}^{-1}$ 电泳 2.0 h. 然后在 UVP 型凝胶成像分析系统下照相并记录,检验并分析优化结果。

水平	模板用量/ ng	Mg ²⁺ 浓度/ (mmol·L ⁻¹)	引物浓度/ (µmol•L ⁻¹)	Taq DNA 聚合酶用量/ U	dNTPs 浓度/ (μmol•L ⁻¹)
1	5	0.5	0.1	0.5	50
2	10	1.0	0.2	1.0	100
3	20	1.5	0.3	1.5	150
4	40	2.0	0.4	2.0	200
5	60	2.5	0.5	2.5	250
6	80	3.0	0.6	3.0	300
7	160	3.5	0.7	3.5	350
8	320	4.0	0.8	4.0	400

表 1 ISSR-PCR 体系优化的因素与水平

注:模板用量为25 µL反应体系中的用量,以下同

1.3.3 ISSR-PCR 反应因素水平的正交设计 在正交设计中,以 DNA 模板用量、 Mg^{2+} 浓度、引物浓度、 Taq DNA 聚合酶用量以及 dNTPs 浓度 5 个因素 4 个水平设计,以单因子试验结果获得的适宜浓度范围作为参考依据,以避免在某一因素的水平设计时偏离正常的浓度范围太远。选用 $L_{16}(4^5)$ 正交表,在 4 个水平上进行实验(见表 2)。ISSR-PCR 扩增程序、PCR 产物检测与单因子试验相同。

编号	模板用量/ ng	Mg ²⁺ 浓度/ (mmol•L ⁻¹)	dNTPs 浓度/ (μmol•L ⁻¹)	Taq DNA 聚合酶用量/ U	引物浓度/ (μmol • L ⁻¹)
1	20	1.5	100	1.0	0.3
2	20	2.0	150	1.5	0.4
3	20	2.5	200	2.0	0.5
4	20	3.0	250	2.5	0.6
5	40	1.5	150	2.0	0.6
6	40	2.0	100	2.5	0.5
7	40	2.5	250	1.0	0.4
8	40	3.0	200	1.5	0.3
9	60	1.5	200	2.5	0.4
10	60	2.0	250	2.0	0.3
11	60	2.5	100	1.5	0.6
12	60	3.0	150	1.0	0.5
13	80	1.5	250	1.5	0.5
14	80	2.0	200	1.0	0.6
15	80	2.5	150	2.5	0.3
16	80	3.0	100	2.0	0.4

表 2 ISSR-PCR 体系优化正交试验设计 L₁₆(4⁵)

1.3.4 两种优化体系的比较 比较分析广藿香 ISSR-PCR 单因子试验和正交设计试验的优化结果,确定其 ISSR-PCR 较适宜的反应体系。

1.3.5 退火温度的确定 运用上述反应程序和较适宜的反应体系,根据所购引物的理论退火温度,设计了 5 个退火温度梯度,即:49.3,50.9,52.7,54.4,55.2 ℃,对所购引物进行退火温度筛选,根据 ISSR-PCR 扩增带结果确定其优化体系的退火温度。最后在保持以上影响因子和热循环参数不变的情况下,对循环次数进行了 5 个梯度试验,即:25,30,35,40,45 个循环,确定适宜的循环次数。

2 结果与分析

2.1 广藿香 DNA 提取 高质量的广藿香 DNA 是进行 ISSR-PCR 研究的基础。本研究采用改良 CTAB 法提取的 DNA 呈无色絮状沉淀,电泳结果显示 DNA 长度等于或接近 23 kb,且无拖尾现象,这说明所提取的 DNA 完整性好,基本上无断裂。 DNA 的 OD_{260}/OD_{280} 均在 1.8 左右,说明 DNA 纯度高(如图 1)。用这种方法提取的广藿香 DNA 有利于 ISSR-PCR 优化实验的研究。



图 1 广藿香基因组 DNA 琼脂糖凝胶电泳检测结果 M 泳道为 λDNA/HindⅢ,泳道 1~4 为广藿香 DNA

2.2 单因子试验结果分析

2.2.1 模板 DNA 用量对 ISSR-PCR 反应的影响 DNA 模板用量是影响 ISSR-PCR 扩增效果的因素之一。从图 2 可以看出,在本试验设计的 8 个模板用量范围内,均能扩增出清晰、稳定的条带。当模板 DNA 用量为 5 ng 时,扩增出的条带较少(如图 2 泳道 1),当用量为 10 ~20 ng 时,扩增出的条带增多,但有个别条带不清晰(如图 2 泳道 2~3);当模板 DNA 用量为 40~320 ng 时,扩增出的条带数和清晰度基本一致(如图 2 泳道 4~8)。在保证扩增条带数量和清晰度的情况下通常尽量选择低用量,所以在广藿香 ISSR-PCR 反应体系中,模板最适用量为 40 ng。

2.2.2 Mg^{2+} 浓度对 ISSR-PCR 反应的影响 Mg^{2+} 作为 Taq DNA 聚合酶的辅助因子,其浓度的高低不仅影响 Taq DNA 聚合酶活性,而且还由于它能与反应液中的 dNTPs、模板 DNA 及引物结合,故影响到引物与模板的结合效率、模板与 PCR 产物的解链温度以及产

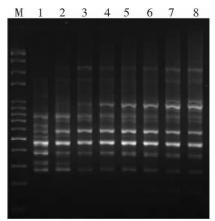


图 2 模板用量试验 泳道 M 为 Marker (100 bp plus DNA ladder); 泳道 1~8 的用量分别为: 5,10,20,40,60,80,160,320 ng

物的特异性和引物二聚体的形成 $^{[7]}$ 。从图 3 可以看出,当 9 Mg $^{2+}$ 浓度为 $^{0.5}$ ~ $^{1.0}$ mmol $^{\circ}$ L $^{-1}$ 时,扩增出的条带较少 (如图 3 泳道 1 ~ 2);当 9 Mg $^{2+}$ 浓度为 $^{1.5}$ ~ $^{2.5}$ mmol $^{\circ}$ L $^{-1}$ 时,扩增出的条带逐渐增多 (在进行正交设计时, 9 Mg $^{2+}$ 浓度的水平设计取值范围可考虑在 $^{1.5}$ ~ $^{2.5}$ mmol $^{\circ}$ L $^{-1}$ 之间),其中,当 9 Mg $^{2+}$ 浓度为 $^{2.5}$ mmol $^{\circ}$ L $^{-1}$ 时,扩增出的条带最多且清晰 (如图 3 泳道 3 ~ 5);当 9 Mg $^{2+}$ 浓度大于 $^{2.5}$ mmol $^{\circ}$ L $^{-1}$ 时,特异性条带增加,背景逐渐模糊 (如图 3 泳道 6 ~ 8)。因此,广藿香ISSR-PCR反应体系中 9 Mg $^{2+}$ 的适宜浓度确定为 $^{2.5}$ mmol $^{\circ}$ L $^{-1}$ 。

2.2.3 引物浓度对 ISSR-PCR 反应的影响 引物浓度的高低也是 PCR 反应中的影响因素。从图 4 可以看出,在 8 个浓度梯度中,当引物浓度在 $0.1 \sim 0.2~\mu mol \cdot L^{-1}$ 时,扩增出的条带少且不清晰(如图 4 泳道 $1 \sim 2$);当引物浓度在 $0.6 \sim 0.8~\mu mol \cdot L^{-1}$ 时,扩增出的条带背景逐渐加深且大片段条带逐渐变得模糊(如图 4 泳道 $6 \sim 8$);当引物浓度在 $0.3 \sim 0.5~\mu mol \cdot L^{-1}$ 时,扩增出的条带基本一致且清晰(如图 4 泳道 $3 \sim 5$,在进行正交设计时,引物浓度的水平设计取值范围可考虑在 $0.3 \sim 0.5~\mu mol \cdot L^{-1}$ 之间)。为了降低成本,将广藿香 ISSR-PCR 反应体系中引物的适宜浓度确定为 $0.3~\mu mol \cdot L^{-1}$ 。

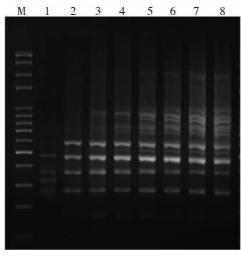


图 3 Mg²⁺浓度试验结果 泳道 M 为 Marker(100 bp plus DNA ladder); 泳道 1~8 的浓度分别为:0.5,1.0,1.5,2.0,2.5, 3.0,3.5,4.0 mol·L⁻¹

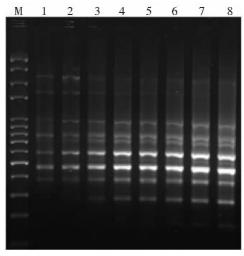


图 4 引物浓度试验结果 泳道 M 为 Marker(100 bp plus DNA ladder); 泳道 1~8 的浓度分别为:0.1,0.2,0.3,0.4,0.5, 0.6,0.7,0.8 μmol·L⁻¹

2.2.4 Taq DNA 聚合酶的用量对 ISSR-PCR 反应的影响 在 PCR 反应中,Taq DNA 聚合酶的单位量也是影响 PCR 结果的重要因素。Taq DNA 聚合酶的用量高,不仅增加试验成本,而且会导致非特异性产物增加;Taq DNA 聚合酶的用量低,则会使酶过早耗完,导致产物合成率下降^[8]。从图 5 可以看出,当 Taq DNA 聚合酶用量在 0.5 U 时,扩增出的条带较少(如图 5 泳道 1),当 Taq DNA 聚合酶用量在 1.0 ~ 2.5 U 时,扩增出的条带较清晰且带型基本一致,但当 Taq DNA 聚合酶用量在 1.5U 时,扩增出的条带最清晰(如图 5,泳道 2 ~ 5,在进行正交设计时,Taq DNA 聚合酶用量之水平设计的取值范围可考虑在 Taq DNA 聚合酶用量大于 2.5 U 时,条带出现弥散现象且出现非特异性产物(如图 5 泳道 6 ~ 8)。因此,广藿香 ISSR-PCR 反应体系中 Taq DNA 聚合酶的最佳用量确定为 Taq DNA 聚合酶的最佳用量确定为 Taq DNA 聚合酶的最佳用量确定为 Taq DNA 聚合酶的最佳用量确定为 Taq DNA 聚合酶的

2.2.5 dNTPs 浓度对 ISSR-PCR 反应的影响 dNTPs 是反应的原料, 其浓度与 PCR 扩增效率有密切关系, 浓度过高, 会导致聚合酶错误地掺入, 影响扩增的特异性和准确性, 同时还会与 Taq DNA 聚合酶竞争 Mg^{2+} , 使反应体系中的 Mg^{2+} 总量下降, 从而影响聚合酶的活性, 浓度过低, 会因 dNTPs 过早消耗而使产物单链化, 影响扩增效果 [9]。从图 6 可以看出, 当 dNTPs 浓度为 50 μ mol • L $^{-1}$ 时, 所扩增出的条带较少(如图 6 泳道 1); 当 dNTPs 浓度为 100 ~ 200 μ mol • L $^{-1}$ 时, 扩增出的条带基本一致(如图 6 泳道 2 ~ 3, 在进行

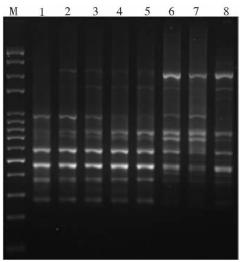


图 5 Taq DNA 聚合酶用量试验结果 泳道 M 为 Marker(100 bp plus DNA ladder); 泳道 1~8 的用量分别为:0.5,1.0,1.5,2.0,2.5, 3.0,3.5,4.0 U

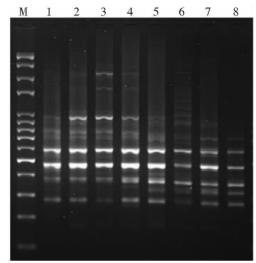


图 6 dNTPs 浓度试验结果 泳道M 为 Marker(100 bp plus DNA ladder);泳 道 1~8 的浓度分别为:50,100,150,200,250, 300,350,400 μmol·L⁻¹

正交设计时,dNTPs 浓度的水平设计取值范围可考虑在 $100 \sim 200 \ \mu mol \cdot L^{-1}$ 之间),但以 dNTPs 浓度为 $150 \ \mu mol \cdot L^{-1}$ 时,扩增出的条带最为清晰;当 dNTPs 浓度为 $250 \ \mu mol \cdot L^{-1}$ 时,扩增的条带数变少,且个 别条带变得模糊(如图 $6 \ 泳道 \ 5$);当 dNTPs 浓度为 $300 \sim 400 \ \mu mol \cdot L^{-1}$ 时,扩增的条带数逐渐变少(如图 $6 \ 泳道 \ 6 \sim 8$)。因此,广藿香 ISSR-PCR 反应体系中 dNTPs 的最佳浓度确定为 $150 \ \mu mol \cdot L^{-1}$ 。

2.3 PCR 正交设计直观分析 正交试验 **PCR** 产物电泳结果见图 7。在 16 个组合中,均有谱带产生。参照何正文等^[10]的方法,依据谱带的强弱和杂带的多少对 **PCR** 扩增结果依次打分。条带数量丰富、清晰、稳定的最佳产物记 16 分,最差的计 1 分。16 个组合的分数从左到右依次为:5,16,6,8,15,3,11,13,2,14,4,7,1,12,9,10 分。

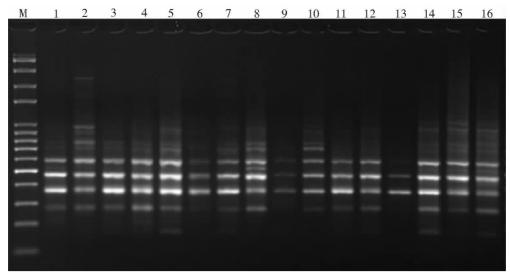


图 7 ISSR-PCR 正交实验结果

泳道 M 为 markers(100 bp plus DNA ladder),泳道 1~16 分别为对应编号组合的正交试验结果。

根据打分结果求出每个因素同一水平下的试验值之和 Ki 以及每一因素同水平下的数据平均值 ki,并求出同一因素不同水平间平均值的极差 R(见表 3) 。

	模板用量/	Mg ²⁺ 浓度/	dNTPs 浓度 /	Taq DNA 聚合酶用量/	引物浓度/
项目	ng	$(\text{mmol} \cdot \text{L}^{-1})$	(μmol • L ⁻¹)	U U	(μmol • L ⁻¹)
K1	35.00	23.00	22.00	35.00	41.00
K2	42.00	45.00	47.00	34.00	39.00
K3	27.00	30.00	33.00	45.00	17.00
K4	32.00	38.00	34.00	22.00	39.00
k1	8.75	5.75	5.50	8.75	10.25
k2	10.50	11.25	11.75	8.50	9.75
k3	6.75	7.50	8.25	11.25	4.25
k4	8.00	9.50	8.50	5.50	9.75
R	3.75	5.50	6.25	5.75	6.00

表 3 正交设计实验结果的直观分析

注:Ki:每个因素同一水平下的试验值之和;ki:每一因素同水平下的数据平均值;R:同一因素不同水平间平均值的极差

极差 R 反映了影响因素对反应体系的影响,R 越大,影响越显著。由表 3 可知,各因素水平的变化对广藿香 ISSR-PCR 反应的影响从大到小依次为:dNTPs > 引物 > Taq DNA 聚合酶 > Mg^{2+} > DNA 模板。每一因素同一水平下的数据平均值 ki 反映了影响因素各水平对反应体系的影响情况,ki 值越大,反应水平越好 [11],因此,广藿香 ISSR-PCR 最优反应体系为 DNA 模板 40 ng, Mg^{2+} 浓度为 2.0 mmol • L^{-1} ,引物浓度为0.3 μmol • L^{-1} ,Tag DNA 聚合酶用量为 2.0 U,dNTPs 浓度为 150 μmol • L^{-1} 。

2.4 **两种优化体系的比较** 根据单因子试验结果,较适宜的反应体系为 DNA 模板 40 ng, Mg^{2+} 浓度为 2.5 mmol·L⁻¹,引物浓度为0.3 μ mol·L⁻¹,Taq DNA 聚合酶用量为1.5 U,dNTPs 浓度为150 μ mol·L⁻¹。 而根据正交试验结果,最优反应体系为 DNA 模板 40 ng, Mg^{2+} 浓度为 2.0 mmol·L⁻¹,引物浓度为 0.3

 μ mol·L⁻¹, Taq DNA 聚合酶用量为 2.0 U, dNTPs 浓度为 150 μ mol·L⁻¹。除了 Mg^2 浓度和 Taq DNA 聚合酶用量不一样外, 其他 3 个因素的最佳水平都一样。为了确定广藿香 ISSR-PCR 最佳反应体系,笔者对 2 种优化体系进行了比较,每种体系重复 3 次(见图 8)。从图 8 可以看出,单因子试验和正交设计试验所显示出的条带数量和清晰度基本一致,但从节约 Taq DNA 聚合酶用量以降低实验成本的角度考虑,广藿香 ISSR-PCR 的最佳反应体系确定为单因子试验所得的优化体系。

2.5 不同退火温度对广藿香 ISSR-PCR 扩增的影响 退火温度是影响扩增特异性的主要因子之一。退火温度过高时,引物不能与模板牢固结合,DNA 扩增效率下降;退火温度过低则可能造成引物与模板错配,非特异性产物增加。用单因子试验确定的广藿香 ISSR-PCR 最佳反应体系进行退火温度梯度试验,设置的 5 个温度梯度分别为 49. 3、50. 9、52. 7、54. 4、55. 2 $^{\circ}$ (见图 9)。从图 9 可以看出,当退火温度为 49. 3 ~ 50. 9 $^{\circ}$ 时,扩增出的条带较少且有非特异性扩增现象发生(如图 9 泳道 1 ~ 2);当退火温度为 54. 4 ~ 55. 2 $^{\circ}$ 时,扩增出的条带逐渐变少且清晰度逐渐降低(如图 9 泳道 4 ~ 5);当退火温度为 52. 7 $^{\circ}$ 飞时,所扩增出的条带数量最多且最清晰(如图 9 泳道 3)。因此,引物 UBC - 868 的最适退火温度确定为 52. 7 $^{\circ}$ 。

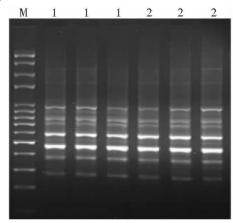


图 8 两种优化体系比较结果 泳道 M 为 markers(100 bp plus DNA ladder), 泳道 1 为单因子试验结果,泳道 2 为正交设计 试验结果

2.6 循环次数对广藿香 ISSR-PCR 扩增的影响 ISSR-PCR 循环次数对扩增产物的量具有重要影响,且不同植物适合的循

环次数不同。循环次数不够,扩增产物少,部分谱带不能检测;过多的循环次数可导致一些非特异性的产物干扰,发生错配的比例也上升,引起弥散现象 $^{[12]}$ 。从图 10 可以看出,当循环次数为 25 次和 30 次时,不能检测到扩增产物(如图 10 泳道 1 ~2);当循环次数为 35 次和 40 次时,所扩增出的条带数量和带型基本一致(如图 10 泳道 3 ~4),但是当循环次数为 40 次时,条带较亮;当循环次数为 45 次时,条带变少且有弥散现象发生(如图 10 泳道 5)。因此,最适宜的循环次数确定为 40 次。

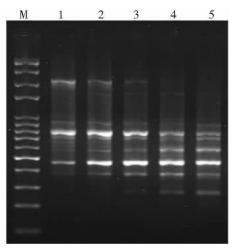


图 9 退火温度的影响 泳道 M 为 markers (100 bp plus DNA ladder), 泳 道 1 ~6 退火温度分别为: 49.3,50.9,52.7,54.4,55.2 $^{\circ}$ C

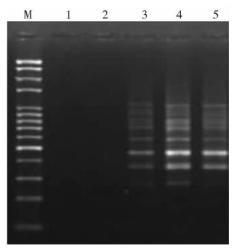


图 10 循环次数的影响 泳道 M 为 markers(100 bp plus DNA ladder),泳道 1~5 循环次数分别为:25,30,35, 40,45 次

3 讨论

ISSR 标记技术已在植物遗传多样性检测、亲缘关系、品种鉴定及育种材料的早期选择等得到广泛应用。但 ISSR 技术极易受外界因素的影响,扩增条件的变化对 ISSR 带谱的影响较大,并且直接影响 ISSR 分析的准确性和可靠性。ISSR 带谱的重复性与稳定性是 ISSR 进行遗传多样性分析的前提条件。因此,

为了获得可重复性高的 ISSR 带谱,在对不同物种,甚至同一物种不种质材料之间进行 ISSR 分析之前,花适当的时间与精力寻求最适宜的 ISSR-PCR 扩增条件是十分必要的。

目前常用 ISSR 实验条件优化的方法有 2 种,即:单因子优化和正交试验优化。正交试验设计具有均衡分散、综合可比及可伸可缩、效应明确的特性,可了解各因素之间的内在规律,较快地找到最优的水平组合 $^{[13]}$ 。但正交试验不能很好地估计实验误差,对结果的评价带有一定的主观成分,使各因素最佳反应水平的确定缺乏可靠性。采用单因子 PCR 优化设计对各个影响因素逐一进行研究,对最佳水平的确定更直观,但不能兼顾各成分之间的交互作用 $^{[11]}$ 。笔者综合运用了 2 种实验方法分析广藿香 ISSR-PCR 体系的影响因素,在一定程度上可有效克服 2 种方法各自的局限性,通过比较 2 种优化方法扩增结果,最终选出广藿香 ISSR-PCR 最适宜的反应体系为:DNA 模板 40 ng, Mg^{2+} 浓度为 2.5 mmol • L^{-1} ,引物浓度为 0.3 μ mol • L^{-1} ,Taq DNA 聚合酶用量为 1.5 U,dNTPs 浓度为 150 μ mol • L^{-1} 。然后又进行了退火温度和循环次数的筛选,确定引物 UBC – 868 最佳退火温度为 52.7 Ω 和最佳循环次数为 40 次。本实验确定了广藿香最适宜的 ISSR-PCR 反应体系,为广藿香种质资源的鉴定和遗传多样性分析提供科学依据。

参考文献:

- [1] 中国医学科学院药用植物资源开发研究所. 中药志(第4册)[M]. 2版. 北京:人民卫生出版社,1998:128.
- [2] 曹柳英,李劲平,梁瑞燕,等. 不同产地广藿香的 RAPD 分析[J]. 中药新药与临床药理,2006,17(3);209-211.
- [3] 潘超美,李 薇,贺 红,等. 不同栽培居群广藿香的种内遗传多样性研究[J]. 中国中药杂志,2006,31(9);723 725.
- [4] ZIETKIEWICZ E, RAFALSKIA, LABUDA D. Genome finger-printing by simple sequence repeat (SSR)—anchored polymerase chain reaction amplication [J]. Genomics, 1994(20):176-183.
- [5] 王建波. ISSR 分子标记及其在植物遗传学中的应用[J]. 遗传, 2002, 24(5): 613 616.
- [6] 李娟玲,刘国民,贾媛,等.一种高效提取鹧鸪茶基因组 DNA 的方法[J].中国农学通报,2010,26(8):69-73.
- [7] 罗玥佶, 伍贤进, 彭帅, 等. 翻白草总 DNA 的提取与 ISSR-PCR 体系的建立与优化[J]. 安徽农业科学, 2008, 36(3): 895-897.
- [8] 何川生,何兴金,葛颂,等. 烤烟品种资源的聚类分析[J]. 植物学报:英文版,2001,43(6):610-614.
- [9] 潘丽梅,朱建华,秦献泉,等. 龙荔基因组 DNA 的提取及 ISSR-PCR 体系的建立与优化[J]. 西南农业学报, 2009, 22 (1):145-149.
- [10] 何正文, 刘运生, 陈立华, 等. 正交设计直观分析法优化 PCR 条件[J]. 湖南医科大学学报, 1998, 23(4):403-404.
- [11] 李鵬,汪阳东,陈益存,等. 油桐 ISSR-PCR 最佳反应体系的建立[J]. 林业科学研究,2008,21(2):194-199.
- [12] 付燕, 罗楠, 杨芩, 等. 枇杷属植物 ISSR 反应体系的建立和优化[J]. 果树学报, 2009, 26 (2):180-185.
- [13] 盖钧镒. 试验统计方法[M]. 北京:中国农业出版社,2003.

Optimization of ISSR-PCR Experimental System for *Pogostemon cablin* with the Dual Experiment Methods of the Single Factor and the Orthogonal Design

CAO Song-xiao, LI Juan-ling, LIU Guo-min, WANG Yi, DAI Jin (The Kudingcha Research Institute, Hainan University, Haikou 570228, China)

Abstract: In order to establish the optimized ISSR-PCR experiment system for *Pogostemon cablin*, the single factor experiments were used to detect the suitable concentration ranges of the different influential factors, and then the orthogonal design was performed to optimize 5 factors (Mg^{2+} , dNTPs, primer, Taq polymerase, DNA template) at 4 levels, which affect ISSR-PCR amplification system of *Pogostemon cablin*. The results indicated that a suitable ISSR-PCR reaction system established; $10 \times \text{buffer } 2.5 \text{ } \mu\text{L}$, 40 ng DNA template, 2.5 mmol • $L^{-1} MgCl_2$, 0.3 μmol • $L^{-1} \text{ primers}$, 1.5 U Taq polymerase, 150 μmol • $L^{-1} \text{ dNTPs}$ were contained in 25 μL reaction solution. The optimized amplification program was that predenaturing at 94 °C for 5 min, then denaturing at 94 °C for 45 s, primer annealing at 52.7 °C for 45 s, extension at 72 °C for 90 s, for 40 cycles, at last extension at 72 °C for 7 min, and the products were stored at 4 °C.

Key words: Pogostemon cablin; ISSR-PCR; single factor tests; orthogonal design