[1] |
陈默, 陈璐, 黄晓雅, 等. PEG模拟干旱胁迫下苗期木薯的生长生理响应 [J]. 云南农业大学学报, 2024, 39(7): 15−22. |
[2] |
张圆雷, 张宏图, 徐子寅, 等. 干旱模式下木薯气孔密度及生理指标的比较分析[J]. 热带生物学报, 2024, 15(5): 1 − 9. |
[3] |
AMELEWORK A B, BAIRU M W. Advances in genetic analysis and breeding of cassava (Manihot esculenta crantz): a review[J]. Plants, 2022, 11(12): 1617. doi: 10.3390/plants11121617 |
[4] |
付海天, 郑华, 文峰, 等. 中国木薯研究及产业发展趋势[J]. 农业研究与应用, 2022, 35(4): 9 − 22. |
[5] |
MEDINA C A, REYES P A, TRUJILLO C A, et al. The role of type Ⅲ effectors from Xanthomonas axonopodis pv. manihotis in virulence and suppression of plant immunity[J]. Molecular Plant Pathology, 2018, 19(3): 593 − 606. doi: 10.1111/mpp.12545 |
[6] |
时涛, 李超萍, 王国芬, 等. 中国木薯病害研究进展与展望[J]. 热带作物学报, 2023, 44(12): 2355 − 2368. doi: 10.3969/j.issn.1000-2561.2023.12.001 |
[7] |
ZHOU J M, ZHANG Y. Plant immunity: danger perception and signaling[J]. Cell, 2020, 181(5): 978 − 989. doi: 10.1016/j.cell.2020.04.028 |
[8] |
YUAN M, NGOU B P M, DING P, et al. PTI-ETI crosstalk: an integrative view of plant immunity[J]. Current Opinion in Plant Biology, 2021, 62: 102030. doi: 10.1016/j.pbi.2021.102030 |
[9] |
HUANG S, JIA A, MA S, et al. NLR signaling in plants: from resistosomes to second messengers[J]. Trends in Biochemical Sciences, 2023, 48(9): 776 − 787. doi: 10.1016/j.tibs.2023.06.002 |
[10] |
JUBIC L M, SAILE S, FURZER O J, et al. Help wanted: helper NLRs and plant immune responses[J]. Current Opinion in Plant Biology, 2019, 50: 82 − 94. doi: 10.1016/j.pbi.2019.03.013 |
[11] |
MARCHAL C, MICHALOPOULOU V A, ZOU Z, et al. Show me your ID: NLR immune receptors with integrated domains in plants[J]. Essays in Biochemistry, 2022, 66(5): 527 − 539. doi: 10.1042/EBC20210084 |
[12] |
CHIA K S, CARELLA P. Taking the lead: NLR immune receptor N-terminal domains execute plant immune responses[J]. The New Phytologist, 2023, 240(2): 496 − 501. doi: 10.1111/nph.19170 |
[13] |
PAN Y H, CHEN L, GUO H F, et al. Systematic analysis of NB-ARC gene family in rice and functional characterization of GNP12[J]. Frontiers in Genetics, 2022, 13: 887217. doi: 10.3389/fgene.2022.887217 |
[14] |
WANG J, CHEN T, HAN M, et al. Plant NLR immune receptor Tm-22 activation requires NB-ARC domain-mediated self-association of CC domain[J]. PLoS Pathogens, 2020, 16(4): e1008475. doi: 10.1371/journal.ppat.1008475 |
[15] |
LIU X, WAN L. Molecular insights into the biochemical functions and signalling mechanisms of plant NLRs[J]. Molecular Plant Pathology, 2022, 23(6): 772 − 780. doi: 10.1111/mpp.13195 |
[16] |
SINHA P, DILIP K T, SK H, et al. Fine mapping and sequence analysis reveal a promising candidate gene encoding a novel NB-ARC domain derived from wild rice (Oryza officinalis) that confers bacterial blight resistance[J]. Frontiers in Plant Science, 2023, 14: 1173063. doi: 10.3389/fpls.2023.1173063 |
[17] |
GRECH-BARAN M, WITEK K, SZAJKO K, et al. Extreme resistance to Potato virus Y in potato carrying the Rysto gene is mediated by a TIR-NLR immune receptor [J]. Plant Biotechnology Journal, 18(3): 655−667. |
[18] |
LIU X, YANG C, WU S, et al. Genetic basis identification of a NLR gene, TaRGA5-like, that confers partial powdery mildew resistance in wheat SJ106[J]. International Journal of Molecular Sciences, 2024, 25(12): 6603. doi: 10.3390/ijms25126603 |
[19] |
BASHIR S, REHMAN N, FAKHAR ZAMAN F, et al. Genome-wide characterization of the NLR gene family in tomato (Solanum lycopersicum) and their relatedness to disease resistance[J]. Frontiers in Genetics, 2022, 13: 931580. doi: 10.3389/fgene.2022.931580 |
[20] |
ZHU Y X, GE C, MA S, et al. Maize ZmFNSI homologs interact with an NLR protein to modulate hypersensitive response[J]. International Journal of Molecular Sciences, 2020, 21(7): 2529. doi: 10.3390/ijms21072529 |
[21] |
VARDEN F A, SAITOH H, YOSHINO K, et al. Cross-reactivity of a rice NLR immune receptor to distinct effectors from the rice blast pathogen Magnaporthe oryzae provides partial disease resistance[J]. The Journal of Biological Chemistry, 2019, 294(35): 13006 − 13016. doi: 10.1074/jbc.RA119.007730 |
[22] |
RAMULIFHO E, REY C. A coiled-coil nucleotide-binding domain leucine-rich repeat receptor gene MeRPPL1 plays a role in the replication of a geminivirus in cassava[J]. Viruses, 2024, 16(6): 941. doi: 10.3390/v16060941 |
[23] |
ZHANG H, YE Z, LIU Z, et al. The cassava NBS-LRR genes confer resistance to cassava bacterial blight[J]. Frontiers in Plant Science, 2022, 13: 790140. doi: 10.3389/fpls.2022.790140 |
[24] |
CHEN L, XIAO J, SONG Y, et al. The zygotic division regulator ZAR1 plays a negative role in defense against Botrytis cinerea in Arabidopsis[J]. Frontiers in Plant Science, 2021, 12: 736560. doi: 10.3389/fpls.2021.736560 |
[25] |
LOZANO R, HAMBLIN M T, PROCHNIK S, et al. Identification and distribution of the NBS-LRR gene family in the Cassava genome[J]. BMC Genomics, 2015, 16(1): 360. doi: 10.1186/s12864-015-1554-9 |
[26] |
DíAZ-TATIS P A, OCHOA J C, RICO E M, et al. RXam2, a NLR from cassava (Manihot esculenta) contributes partially to the quantitative resistance to Xanthomonas phaseoli pv. manihotis[J]. Plant Molecular Biology, 2022, 109(3): 313 − 324. doi: 10.1007/s11103-021-01211-2 |
[27] |
ADACHI H, KAMOUN S. NLR receptor networks in plants[J]. Essays in Biochemistry, 2022, 66(5): 541 − 549. doi: 10.1042/EBC20210075 |
[28] |
GANGURDE S S, XAVIER A, NAIK Y D, et al. Two decades of association mapping: insights on disease resistance in major crops[J]. Frontiers in Plant Science, 2022, 13: 1064059. doi: 10.3389/fpls.2022.1064059 |
[29] |
URBACH J M, AUSUBEL F M. The NBS-LRR architectures of plant R-proteins and metazoan NLRs evolved in independent events[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(5): 1063 − 1068. |
[30] |
TONG C, ZHANG Y, SHI F. Genome-wide identification and analysis of the NLR gene family in Medicago ruthenica[J]. Frontiers in Genetics, 2023, 13: 1088763. doi: 10.3389/fgene.2022.1088763 |
[31] |
ZHANG Y M, CHEN M, SUN L, et al. Genome-wide identification and evolutionary analysis of NBS-LRR genes from Dioscorea rotundata[J]. Frontiers in Genetics, 2020, 11: 484. doi: 10.3389/fgene.2020.00484 |
[32] |
WANG T, JIA Z H, ZHANG J Y, et al. Identification and analysis of NBS-LRR genes in Actinidia chinensis genome[J]. Plants, 2020, 9(10): 1350. doi: 10.3390/plants9101350 |
[33] |
GUO L, YOU C, ZHANG H, et al. Genome-wide analysis of NBS-LRR genes in Rosaceae species reveals distinct evolutionary patterns[J]. Frontiers in Genetics, 2022, 13: 1052191. doi: 10.3389/fgene.2022.1052191 |
[34] |
ZHENG X, ZHAI W, LI X, et al. NBS-LRR resistance gene homologues in rice[J]. Science in China Series C: Life Sciences, 2001, 44(3): 253 − 262. doi: 10.1007/BF02879332 |
[35] |
BI G, SU M, LI N, et al. The ZAR1 resistosome is a calcium-permeable channel triggering plant immune signaling[J]. Cell, 2021, 184(13): 3528 − 3541.e12. doi: 10.1016/j.cell.2021.05.003 |
[36] |
HU H, ZHANG T, WANG J, et al. The dynamic TaRACK1B-TaSGT1-TaHSP90 complex modulates NLR-protein-mediated antiviral immunity in wheat[J]. Cell Reports, 2024, 43(10): 114765. doi: 10.1016/j.celrep.2024.114765 |
[37] |
赵烁. 喷施超敏蛋白对葡萄生长结实及诱导抗性的作用研究 [D]. 泰安: 山东农业大学, 2020. |
[38] |
BARRAGAN A C, WEIGEL D. Plant NLR diversity: the known unknowns of pan-NLRomes[J]. The Plant Cell, 2021, 33(4): 814 − 831. doi: 10.1093/plcell/koaa002 |