[1] 金迪. 和美乡村视阈下农村人居环境整治规划策略研究[J]. 农业经济, 2024(6): 50 − 53.
[2] 唐阿楠. 宜居宜业和美乡村建设的价值旨归、困境及路径探析[J]. 农业经济, 2025(1): 80 − 83.
[3] 卢青. 农村人居环境综合评价指标体系构建及实证: 以湖北省为例[J]. 统计与决策, 2022, 38(22): 71 − 75.
[4] 韩振, 罗尔呷, 刘合光. 农村人居环境质量满意度及其影响因素研究: 基于183村1362份农户调查数据的分析[J]. 生态经济, 2024, 40(3): 210 − 214.
[5] 韩瑞萍, 王帅. 农村人居环境治理: 现实之需、束缚所在与破解之路[J]. 农业经济, 2024(8): 66 − 69.
[6] 刘洋, 周孟亮. 新时代背景下美丽乡村建设的重点领域及推进策略[J]. 生态经济, 2025, 41(2): 222 − 229.
[7] 冷波. 行政引领自治: 农村人居环境治理的实践与机制[J]. 华南农业大学学报(社会科学版), 2021, 20(6): 15 − 22.
[8] 于法稳, 胡梅梅, 王广梁. 面向2035年远景目标的农村人居环境整治提升路径及对策研究[J]. 中国软科学, 2022(7): 17 − 27.
[9] 郭晓勋, 赵晨, 齐文浩. 农旅融合促进农村人居环境改善的理论分析与实证检验[J]. 求是学刊, 2024, 51(6): 56 − 69.
[10] 黄云凌. 农村人居环境整治中的村民参与度研究: 基于社区能力视角[J]. 农村经济, 2020(9): 123 − 129.
[11] 于法稳, 孙韩小雪, 吴青林, 等. 美丽中国建设背景下的健康乡村: 内涵特征、重点领域及推进策略[J]. 生态经济, 2025, 41(1): 35 − 43.
[12] 邓茜月, 王永生, 黄晗. 四川省农村人居环境质量时空演化特征与驱动因素[J]. 农业资源与环境学报, 2023, 40(5): 1111 − 1121.
[13]

PAN D, YU Y, JI K. The impact of rural living environment improvement programs on the subjective well-being of rural residents in China[J]. Humanities and Social Sciences Communications, 2024, 11: 1 − 17. doi:  10.1057/s41599-024-03052-y
[14]

YU C, LIU W X, KHAN S U, et al. Regional differential decomposition and convergence of rural green development efficiency: evidence from China[J]. Environmental Science and Pollution Research, 2020, 27(18): 22364 − 22379.
[15]

HUANG K, WANG J, BAI J, et al. Domestic solid waste discharge and its determinants in rural China[J]. China Agricultural Economic Review, 2013, 5(4): 512 − 525. doi:  10.1108/CAER-02-2012-0008
[16]

VINTI G, VACCARI M. Solid waste management in rural communities of developing countries: an overview of challenges and opportunities[J]. Clean Technologies, 2022, 4(4): 1138 − 1151. doi:  10.3390/cleantechnol4040069
[17]

RAHMAWATI E, MUJIANTO, AMIR A, et al. Rural waste management model in creating an inclusive economy[J]. IOP Conference Series: Earth and Environmental Science, 2023, 1180(1): 012005. doi:  10.1088/1755-1315/1180/1/012005
[18]

OBAIDEEN K, SHEHATA N, SAYED E T, et al. The role of wastewater treatment in achieving sustainable development goals (SDGs) and sustainability guideline[J]. Energy Nexus, 2022, 7: 100112. doi:  10.1016/j.nexus.2022.100112
[19]

WANG J, LIU P. Study on environmental pollution and governance in rural development[J]. Fresenius Environmental Bulletin, 2019, 28(12): 9218 − 9222.
[20]

ZHANG C, QUAN B, TANG J, et al. China’s wastewater treatment: Status quo and sustainability perspectives[J]. Journal of Water Process Engineering, 2023, 53: 103708. doi:  10.1016/j.jwpe.2023.103708
[21]

NI Y, ZHANG Z. Comparison and selection of wet waste disposal modes for villages in agriculture-related towns taking Shanghai, China, as an example[J]. Sustainability, 2024, 16(12): 4936. doi:  10.3390/su16124936
[22]

GALLEGO-SCHMID A, TARPANI R R Z. Life cycle assessment of wastewater treatment in developing countries: a review[J]. Water Research, 2019, 153: 63 − 79. doi:  10.1016/j.watres.2019.01.010
[23]

SAIDULU D, MAJUMDER A, GUPTA A K. A systematic review of moving bed biofilm reactor, membrane bioreactor, and moving bed membrane bioreactor for wastewater treatment: Comparison of research trends, removal mechanisms, and performance[J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 106112. doi:  10.1016/j.jece.2021.106112
[24]

FARAGò M, DAMGAARD A, LOGAR I, et al. Life cycle assessment and cost-benefit analysis of technologies in water resource recovery facilities: the case of sludge pyrolysis[J]. Environmental Science & Technology, 2022, 56(24): 17988 − 17997.
[25]

KAR S, SINGH R, GURIAN P L, et al. Life cycle assessment and techno-economic analysis of nitrogen recovery by ammonia air-stripping from wastewater treatment[J]. Science of the Total Environment, 2023, 857: 159499. doi:  10.1016/j.scitotenv.2022.159499
[26]

MAYOR á, VINARDELL S, GANESAN K, et al. Life-cycle assessment and techno-economic evaluation of the value chain in nutrient recovery from wastewater treatment plants for agricultural application[J]. Science of the Total Environment, 2023, 892: 164452. doi:  10.1016/j.scitotenv.2023.164452
[27]

FARAGò M, DAMGAARD A, MADSEN J A, et al. From wastewater treatment to water resource recovery: Environmental and economic impacts of full-scale implementation[J]. Water Research, 2021, 204: 117554. doi:  10.1016/j.watres.2021.117554
[28]

GUO X, GUO F, CHEN J, et al. Optimal pathways for upgrading China’s wastewater treatment plants for achieving water quality standards at least economic and environmental cost[J]. Journal of Environmental Management, 2023, 344: 118397. doi:  10.1016/j.jenvman.2023.118397
[29]

ALIZADEH S, ZAFARI-KOLOUKHI H, ROSTAMI F, et al. The eco-efficiency assessment of wastewater treatment plants in the city of Mashhad using emergy and life cycle analyses[J]. Journal of Cleaner Production, 2020, 249: 119327. doi:  10.1016/j.jclepro.2019.119327
[30]

GUVEN H, ERIKSSON O, WANG Z, et al. Life cycle assessment of upgrading options of a preliminary wastewater treatment plant including food waste addition[J]. Water Research, 2018, 145: 518 − 530. doi:  10.1016/j.watres.2018.08.061
[31]

CHEN X, GENG Y, FUJITA T. An overview of municipal solid waste management in China[J]. Waste Management, 2010, 30(4): 716 − 724. doi:  10.1016/j.wasman.2009.10.011
[32]

ZHAO J, LI X, CHEN L, et al. Scenario analysis of the eco-efficiency for municipal solid waste management: a case study of 211 cities in western China[J]. Science of the Total Environment, 2024, 919: 170536. doi:  10.1016/j.scitotenv.2024.170536
[33]

XIAO W, LIU T, TONG X. Assessing the carbon reduction potential of municipal solid waste management transition: Effects of incineration, technology and sorting in Chinese cities[J]. Resources, Conservation and Recycling, 2023, 188: 106713. doi:  10.1016/j.resconrec.2022.106713
[34]

LIAO N, Lü F, ZHANG H, et al. Life cycle assessment of waste management in rural areas in the transition period from mixed collection to source-separation[J]. Waste Management, 2023, 158: 57 − 65. doi:  10.1016/j.wasman.2023.01.008
[35] 保亭县统计局. 2022年保亭县统计年鉴 [R]. 保亭黎族苗族自治县, 2023.
[36] 三道镇农业服务中心. 农业统计年报 [R]. 保亭黎族苗族自治县, 2023.
[37] 海南省环境科学研究院. 赤田水库流域农村生活垃圾分类实施方案 [R]. 保亭黎族苗族自治县, 2021.
[38] 保亭黎族苗族自治县园林环卫服务中心. 保亭县三道社区环境卫生智慧化管理项目实施方案 [R]. 保亭黎族苗族自治县, 2022.
[39] 中帆睿建工程咨询有限公司. 保亭县赤田水库上游流域农村生活污水治理工程初步设计说明 [R]. 保亭黎族苗族自治县, 2021.
[40] 三道镇污水处理厂. 2023年三道镇污水进出水流量表 [R]. 保亭黎族苗族自治县, 2024.
[41] 三道镇污水处理厂. 2023年三道镇水质统计表 [R]. 保亭黎族苗族自治县, 2024.
[42] 中华人民共和国生态环境部. 水质 总氮的测定 碱性过硫酸钾消解紫外分光光度法 [M]. 北京: 中国环境科学出版社, 2012.
[43] 中华人民共和国生态环境部. 水质 总磷的测定 钼酸铵分光光度法 [M]. 北京: 中国环境科学出版社, 1990.
[44]

SHI L, CHEN H, MENG H, et al. How environmental policy impacts technology adoption: a case of landfill leachate[J]. Journal of Cleaner Production, 2021, 310: 127484. doi:  10.1016/j.jclepro.2021.127484
[45] 海南省生态环境保护厅. 海南省农村生活污水处理技术指引 [R]. 海南, 2016.
[46] 海南省市场监督管理局. 生活垃圾焚烧污染控制标准: DB46/ 484—2019 [S]. 海口: 海南省市场监督管理局, 2019.
[47] 彭立群, 张强, 贺克斌. 基于调查的中国秸秆露天焚烧污染物排放清单[J]. 环境科学研究, 2016, 29(8): 1109 − 1118.
[48] 杨夏捷, 鞠园华, 郭福涛, 等. 中国亚热带地区农作物秸秆露天燃烧污染物排放清单 [C]//2017中国环境科学学会科学与技术年会论文集(第一卷). 厦门, 2017: 812−820.
[49]

FANG W, DING Y, GENG J, et al. High potential of coupling the source-separation and incineration promotion to reduce costs based on city-level cost-benefit analysis of municipal solid waste management strategies in China[J]. Resources, Conservation and Recycling, 2023, 197: 107099. doi:  10.1016/j.resconrec.2023.107099
[50]

LIU J, FANG L, QIU T, et al. Crop residue return achieves environmental mitigation and enhances grain yield: a global meta-analysis[J]. Agronomy for Sustainable Development, 2023, 43(6): 78. doi:  10.1007/s13593-023-00928-2
[51] 李妍, 高贤彪, 梁海恬, 等. 华北都市型农村生活垃圾产生特征与处理模式构建[J]. 农业工程, 2019, 9(8): 56 − 61.
[52] 张静, 仲跻胜, 邵立明, 等. 海南省琼海市农村生活垃圾产生特征及就地处理实践[J]. 农业环境科学学报, 2009, 28(11): 2422 − 2427.
[53]

DING Y, ZHAO J, LIU J W, et al. A review of China’s municipal solid waste (MSW) and comparison with international regions: Management and technologies in treatment and resource utilization[J]. Journal of Cleaner Production, 2021, 293: 126144. doi:  10.1016/j.jclepro.2021.126144
[54]

ZHANG J, HU K, LI K, et al. Simulating the effects of long-term discontinuous and continuous fertilization with straw return on crop yields and soil organic carbon dynamics using the DNDC model[J]. Soil and Tillage Research, 2017, 165: 302 − 314. doi:  10.1016/j.still.2016.09.004
[55]

HUO L, PANG H, ZHAO Y, et al. Buried straw layer plus plastic mulching improves soil organic carbon fractions in an arid saline soil from Northwest China[J]. Soil and Tillage Research, 2017, 165: 286 − 293. doi:  10.1016/j.still.2016.09.006
[56]

HU J, LEI T, WANG Z, et al. Economic, environmental and social assessment of briquette fuel from agricultural residues in China–A study on flat die briquetting using corn stalk[J]. Energy, 2014, 64: 557 − 566. doi:  10.1016/j.energy.2013.10.028
[57]

LIU Z, WANG D, NING T, et al. Sustainability assessment of straw utilization circulation modes based on the emergetic ecological footprint[J]. Ecological Indicators, 2017, 75: 1 − 7. doi:  10.1016/j.ecolind.2016.12.024
[58] 关睿. 农村污水处理模式的LCA-LCC集成分析 [D]. 上海: 上海交通大学, 2020.
[59] 范彬, 胡明, 顾俊, 等. 不同农村污水收集处理方式的经济性比较[J]. 中国给水排水, 2015, 31(14): 20 − 25.
[60]

WU H, WANG R, YAN P, et al. Constructed wetlands for pollution control[J]. Nature Reviews Earth & Environment, 2023, 4: 218 − 234.
[61] 边恩元, 李波, 穆芳, 等. 广元市城区居民生活饮用水水源卫生现状调查[J]. 现代预防医学, 2016, 43(12): 2267 − 2270.
[62] 王敏英, 郭庆, 林博虎, 等. 政策效益视角下我国流域生态补偿机制完善问题探析[J]. 世界林业研究, 2023, 36(1): 130 − 135.
[63] 陈诗华, 王玥, 王洪良, 等. 欧盟和美国的农业生态补偿政策及启示[J]. 中国农业资源与区划, 2022, 43(1): 10 − 17.
[64] 张洁, 陈美球, 谢贤鑫, 等. 农户生态耕种采纳行为影响因素实证研究: 基于江西省1488份农户的调查数据[J]. 生态经济, 2020, 36(5): 99 − 103.
[65] 孔姝懿, 张蔚, 谢梦玲, 等. 澳大利亚国家公园生态产品价值实现: 理论框架与现实路径[J]. 世界林业研究, 2024, 37(6): 99 − 106.
[66] 景晓栋, 田贵良, 张钰宁. 治水新思路下我国水生态补偿实践探索与政策建议[J]. 水利经济, 2024, 42(6): 50 − 57.