[1] |
杨倩, 薛璐, 郭慧, 等. 植物根际促生菌防治黄瓜枯萎病的研究进展[J]. 中国瓜菜, 2022, 35(1): 1 − 8. doi: 10.3969/j.issn.1673-2871.2022.01.001 |
[2] |
海南省统计局, 国家统计局海南调查总队. 海南统计年鉴2024[M]. 北京: 中国统计出版社, 2024. (查阅网上资料, 未找到本条文献页码信息, 请补充) |
[3] |
ZHANG X Z, MENG X H, JIAO X D, et al. Physiological mechanism beneath the inhibition of Cleome spinosa against the morphology and reproduction of Fusarium oxysporum[J]. Heliyon, 2023, 9(12): e22622. doi: 10.1016/j.heliyon.2023.e22622 |
[4] |
YE X F, LI Z K, LUO X, et al. A predatory myxobacterium controls cucumber Fusarium wilt by regulating the soil microbial community[J]. Microbiome, 2020, 8(1): 49. doi: 10.1186/s40168-020-00824-x |
[5] |
YANG F, JIANG H Y, CHANG G Z, et al. Effects of rhizosphere microbial communities on cucumber Fusarium wilt disease suppression[J]. Microorganisms, 2023, 11(6): 1576. doi: 10.3390/microorganisms11061576 |
[6] |
AHN I P, CHUNG H S, LEE Y H. Vegetative compatibility groups and pathogenicity among isolates of Fusarium oxysporum f. sp. cucumerinum[J]. Plant Disease, 1998, 82(2): 244 − 246. doi: 10.1094/PDIS.1998.82.2.244 |
[7] |
CABRERA DE LA FUENTE M, FELIX LEYVA J T, DELGADO MARTINEZ R, et al. Grafting and soil with drought stress can increase the antioxidant status in cucumber[J]. Agronomy, 2023, 13(4): 994. doi: 10.3390/agronomy13040994 |
[8] |
NISHIOKA T, MARIAN M, KOBAYASHI I, et al. Microbial basis of Fusarium wilt suppression by Allium cultivation[J]. Scientific Reports, 2019, 9(1): 1715. doi: 10.1038/s41598-018-37559-7 |
[9] |
PIASAI O, ANYONG T, KHEWKHOM N, et al. Fungicides control black rot in Vanda: a strategy to avoid fungicide resistance[J]. European Journal of Plant Pathology, 2024, 169(2): 247 − 257. doi: 10.1007/s10658-024-02824-1 |
[10] |
ISLAM T, DANISHUDDIN, TAMANNA N T, et al. Resistance mechanisms of plant pathogenic fungi to fungicide, environmental impacts of fungicides, and sustainable solutions[J]. Plants, 2024, 13(19): 2737. doi: 10.3390/plants13192737 |
[11] |
XU M, SHI Y, FAN D L, et al. Co-culture of white rot fungi Pleurotus ostreatus P5 and Bacillus amyloliquefaciens B2: a strategy to enhance lipopeptide production and suppress of Fusarium wilt of cucumber[J]. Journal of Fungi, 2023, 9(11): 1049. doi: 10.3390/jof9111049 |
[12] |
KARAČIĆ V, MILJAKOVIĆ D, MARINKOVIĆ J, et al. Bacillus species: excellent biocontrol agents against tomato diseases[J]. Microorganisms, 2024, 12(3): 457. doi: 10.3390/microorganisms12030457 |
[13] |
LI M, MA G S, LIAN H, et al. The effects of Trichoderma on preventing cucumber fusarium wilt and regulating cucumber physiology[J]. Journal of Integrative Agriculture, 2019, 18(3): 607 − 617. doi: 10.1016/S2095-3119(18)62057-X |
[14] |
LU D D, MA Z, XU X H, et al. Isolation and identification of biocontrol agent Streptomyces rimosus M527 against Fusarium oxysporum f. sp. cucumerinum[J]. Journal of Basic Microbiology, 2016, 56(8): 929 − 933. doi: 10.1002/jobm.201500666 |
[15] |
王猛, 吴含, 段海明, 等. 解淀粉芽胞杆菌SJ1606产脂肽粗提物协同代森锰锌对2种植物病菌的抑制效果[J]. 安徽农业大学学报, 2024, 51(2): 223 − 229. doi: 10.13610/j.cnki.1672-352x.20240510.016 |
[16] |
JIA K, GAO Y H, HUANG X Q, et al. Rhizosphere inhibition of cucumber fusarium wilt by different surfactin-excreting strains of Bacillus subtilis[J]. The Plant Pathology Journal, 2015, 31(2): 140 − 151. doi: 10.5423/PPJ.OA.10.2014.0113 |
[17] |
XU Z H, ZHANG R F, WANG D D, et al. Enhanced control of cucumber wilt disease by Bacillus amyloliquefaciens SQR9 by altering the regulation of its DegU phosphorylation[J]. Applied and Environmental Microbiology, 2014, 80(9): 2941 − 2950. doi: 10.1128/AEM.03943-13 |
[18] |
季倩茹, 陈静, 胡远亮, 等. 3种芽孢杆菌菌剂对黄瓜枯萎病的防效及其作用机制初探[J]. 华中农业大学学报, 2020, 39(5): 101 − 107. doi: 10.13300/j.cnki.hnlkxb.2020.05.014 |
[19] |
TA Y, FU S W, LIU H, et al. Evaluation of Bacillus velezensis F9 for cucumber growth promotion and suppression of Fusarium wilt disease[J]. Microorganisms, 2024, 12(9): 1882. doi: 10.3390/microorganisms12091882 |
[20] |
兰成忠, 甘林, 代玉立, 等. 黄瓜枯萎病菌拮抗菌的筛选、鉴定和防效测定[J]. 中国生物防治学报, 2023, 39(1): 184 − 193. doi: 10.16409/j.cnki.2095-039x.2023.02.006 |
[21] |
廖延雄. 《伯杰氏鉴定细菌学手册》与《伯杰氏分类细菌学手册》[J]. 微生物学通报, 1992, 19(4): 249. doi: 10.13344/j.microbiol.china.1992.04.017 |
[22] |
中华人民共和国农业部. NY/T 1857.3—2010 黄瓜主要病害抗病性鉴定技术规程 第3部分: 黄瓜抗枯萎病鉴定技术规程[S]. 北京: 中国农业出版社, 2010. (查阅网上资料, 未找到本条文献页码信息, 请补充) |
[23] |
ZHANG L, LIU Z R, PU Y L, et al. Antagonistic strain Bacillus velezensis JZ mediates the biocontrol of Bacillus altitudinis m-1, a cause of leaf spot disease in strawberry[J]. International Journal of Molecular Sciences, 2024, 25(16): 8872. doi: 10.3390/ijms25168872 |
[24] |
TAHIR H A S, ALI Q, RAJER F U, et al. Transcriptomic analysis of Ralstonia solanacearum in response to antibacterial volatiles of Bacillus velezensis FZB42[J]. Archives of Microbiology, 2023, 205(11): 358. doi: 10.1007/s00203-023-03697-4 |
[25] |
SU L H, ZHANG J Y, FAN J Y, et al. Antagonistic mechanism analysis of Bacillus velezensis JLU-1, a biocontrol agent of rice pathogen Magnaporthe oryzae[J]. Journal of Agricultural and Food Chemistry, 2024, 72(36): 19657 − 19666. doi: 10.1021/acs.jafc.4c05353 |
[26] |
YANG F, WANG X, JIANG H Y, et al. Formation of a novel antagonistic bacterial combination to enhance biocontrol for cucumber Fusarium wilt[J]. Microorganisms, 2025, 13(1): 133. doi: 10.3390/microorganisms13010133 |
[27] |
SUGIYAMA T, NATSUAKI K T, TANAKA N, et al. Antagonism of Bacillus velezensis isolate from anaerobically digested dairy slurry against Fusarium wilt of spinach[J]. Agronomy, 2022, 12(5): 1058. doi: 10.3390/agronomy12051058 |
[28] |
XIA X Y, WEI Q H, WU H X, et al. Bacillus species are core microbiota of resistant maize cultivars that induce host metabolic defense against corn stalk rot[J]. Microbiome, 2024, 12(1): 156. doi: 10.1186/s40168-024-01887-w |
[29] |
ZHOU J E, LIANG J F, ZHANG X Y, et al. Trichoderma brevicompactum 6311: prevention and control of Phytophthora capsici and its growth-promoting effect[J]. Journal of Fungi, 2025, 11(2): 105. doi: 10.3390/jof11020105 |
[30] |
LI G L, SHI M X, WAN W H, et al. Maize endophytic plant growth-promoting bacteria Peribacillus simplex can alleviate plant saline and alkaline stress[J]. International Journal of Molecular Sciences, 2024, 25(20): 10870. doi: 10.3390/ijms252010870 |
[31] |
SOLIMAN A, MATAR S, ABO-ZAID G. Production of Bacillus velezensis Strain GB1 as a biocontrol agent and its impact on Bemisia tabaci by inducing systemic resistance in a squash plant[J]. Horticulturae, 2022, 8(6): 511. doi: 10.3390/horticulturae8060511 |
[32] |
KASHYAP N, SINGH S K, YADAV N, et al. Biocontrol screening of endophytes: applications and limitations[J]. Plants, 2023, 12(13): 2480. doi: 10.3390/plants12132480 |