[1] 杨倩, 薛璐, 郭慧, 等. 植物根际促生菌防治黄瓜枯萎病的研究进展[J]. 中国瓜菜, 2022, 35(1): 1 − 8. doi:  10.3969/j.issn.1673-2871.2022.01.001
[2] 海南省统计局, 国家统计局海南调查总队. 海南统计年鉴2024[M]. 北京: 中国统计出版社, 2024. (查阅网上资料, 未找到本条文献页码信息, 请补充)
[3]

ZHANG X Z, MENG X H, JIAO X D, et al. Physiological mechanism beneath the inhibition of Cleome spinosa against the morphology and reproduction of Fusarium oxysporum[J]. Heliyon, 2023, 9(12): e22622. doi:  10.1016/j.heliyon.2023.e22622
[4]

YE X F, LI Z K, LUO X, et al. A predatory myxobacterium controls cucumber Fusarium wilt by regulating the soil microbial community[J]. Microbiome, 2020, 8(1): 49. doi:  10.1186/s40168-020-00824-x
[5]

YANG F, JIANG H Y, CHANG G Z, et al. Effects of rhizosphere microbial communities on cucumber Fusarium wilt disease suppression[J]. Microorganisms, 2023, 11(6): 1576. doi:  10.3390/microorganisms11061576
[6]

AHN I P, CHUNG H S, LEE Y H. Vegetative compatibility groups and pathogenicity among isolates of Fusarium oxysporum f. sp. cucumerinum[J]. Plant Disease, 1998, 82(2): 244 − 246. doi:  10.1094/PDIS.1998.82.2.244
[7]

CABRERA DE LA FUENTE M, FELIX LEYVA J T, DELGADO MARTINEZ R, et al. Grafting and soil with drought stress can increase the antioxidant status in cucumber[J]. Agronomy, 2023, 13(4): 994. doi:  10.3390/agronomy13040994
[8]

NISHIOKA T, MARIAN M, KOBAYASHI I, et al. Microbial basis of Fusarium wilt suppression by Allium cultivation[J]. Scientific Reports, 2019, 9(1): 1715. doi:  10.1038/s41598-018-37559-7
[9]

PIASAI O, ANYONG T, KHEWKHOM N, et al. Fungicides control black rot in Vanda: a strategy to avoid fungicide resistance[J]. European Journal of Plant Pathology, 2024, 169(2): 247 − 257. doi:  10.1007/s10658-024-02824-1
[10]

ISLAM T, DANISHUDDIN, TAMANNA N T, et al. Resistance mechanisms of plant pathogenic fungi to fungicide, environmental impacts of fungicides, and sustainable solutions[J]. Plants, 2024, 13(19): 2737. doi:  10.3390/plants13192737
[11]

XU M, SHI Y, FAN D L, et al. Co-culture of white rot fungi Pleurotus ostreatus P5 and Bacillus amyloliquefaciens B2: a strategy to enhance lipopeptide production and suppress of Fusarium wilt of cucumber[J]. Journal of Fungi, 2023, 9(11): 1049. doi:  10.3390/jof9111049
[12]

KARAČIĆ V, MILJAKOVIĆ D, MARINKOVIĆ J, et al. Bacillus species: excellent biocontrol agents against tomato diseases[J]. Microorganisms, 2024, 12(3): 457. doi:  10.3390/microorganisms12030457
[13]

LI M, MA G S, LIAN H, et al. The effects of Trichoderma on preventing cucumber fusarium wilt and regulating cucumber physiology[J]. Journal of Integrative Agriculture, 2019, 18(3): 607 − 617. doi:  10.1016/S2095-3119(18)62057-X
[14]

LU D D, MA Z, XU X H, et al. Isolation and identification of biocontrol agent Streptomyces rimosus M527 against Fusarium oxysporum f. sp. cucumerinum[J]. Journal of Basic Microbiology, 2016, 56(8): 929 − 933. doi:  10.1002/jobm.201500666
[15] 王猛, 吴含, 段海明, 等. 解淀粉芽胞杆菌SJ1606产脂肽粗提物协同代森锰锌对2种植物病菌的抑制效果[J]. 安徽农业大学学报, 2024, 51(2): 223 − 229. doi:  10.13610/j.cnki.1672-352x.20240510.016
[16]

JIA K, GAO Y H, HUANG X Q, et al. Rhizosphere inhibition of cucumber fusarium wilt by different surfactin-excreting strains of Bacillus subtilis[J]. The Plant Pathology Journal, 2015, 31(2): 140 − 151. doi:  10.5423/PPJ.OA.10.2014.0113
[17]

XU Z H, ZHANG R F, WANG D D, et al. Enhanced control of cucumber wilt disease by Bacillus amyloliquefaciens SQR9 by altering the regulation of its DegU phosphorylation[J]. Applied and Environmental Microbiology, 2014, 80(9): 2941 − 2950. doi:  10.1128/AEM.03943-13
[18] 季倩茹, 陈静, 胡远亮, 等. 3种芽孢杆菌菌剂对黄瓜枯萎病的防效及其作用机制初探[J]. 华中农业大学学报, 2020, 39(5): 101 − 107. doi:  10.13300/j.cnki.hnlkxb.2020.05.014
[19]

TA Y, FU S W, LIU H, et al. Evaluation of Bacillus velezensis F9 for cucumber growth promotion and suppression of Fusarium wilt disease[J]. Microorganisms, 2024, 12(9): 1882. doi:  10.3390/microorganisms12091882
[20] 兰成忠, 甘林, 代玉立, 等. 黄瓜枯萎病菌拮抗菌的筛选、鉴定和防效测定[J]. 中国生物防治学报, 2023, 39(1): 184 − 193. doi:  10.16409/j.cnki.2095-039x.2023.02.006
[21] 廖延雄. 《伯杰氏鉴定细菌学手册》与《伯杰氏分类细菌学手册》[J]. 微生物学通报, 1992, 19(4): 249. doi:  10.13344/j.microbiol.china.1992.04.017
[22] 中华人民共和国农业部. NY/T 1857.3—2010 黄瓜主要病害抗病性鉴定技术规程 第3部分: 黄瓜抗枯萎病鉴定技术规程[S]. 北京: 中国农业出版社, 2010. (查阅网上资料, 未找到本条文献页码信息, 请补充)
[23]

ZHANG L, LIU Z R, PU Y L, et al. Antagonistic strain Bacillus velezensis JZ mediates the biocontrol of Bacillus altitudinis m-1, a cause of leaf spot disease in strawberry[J]. International Journal of Molecular Sciences, 2024, 25(16): 8872. doi:  10.3390/ijms25168872
[24]

TAHIR H A S, ALI Q, RAJER F U, et al. Transcriptomic analysis of Ralstonia solanacearum in response to antibacterial volatiles of Bacillus velezensis FZB42[J]. Archives of Microbiology, 2023, 205(11): 358. doi:  10.1007/s00203-023-03697-4
[25]

SU L H, ZHANG J Y, FAN J Y, et al. Antagonistic mechanism analysis of Bacillus velezensis JLU-1, a biocontrol agent of rice pathogen Magnaporthe oryzae[J]. Journal of Agricultural and Food Chemistry, 2024, 72(36): 19657 − 19666. doi:  10.1021/acs.jafc.4c05353
[26]

YANG F, WANG X, JIANG H Y, et al. Formation of a novel antagonistic bacterial combination to enhance biocontrol for cucumber Fusarium wilt[J]. Microorganisms, 2025, 13(1): 133. doi:  10.3390/microorganisms13010133
[27]

SUGIYAMA T, NATSUAKI K T, TANAKA N, et al. Antagonism of Bacillus velezensis isolate from anaerobically digested dairy slurry against Fusarium wilt of spinach[J]. Agronomy, 2022, 12(5): 1058. doi:  10.3390/agronomy12051058
[28]

XIA X Y, WEI Q H, WU H X, et al. Bacillus species are core microbiota of resistant maize cultivars that induce host metabolic defense against corn stalk rot[J]. Microbiome, 2024, 12(1): 156. doi:  10.1186/s40168-024-01887-w
[29]

ZHOU J E, LIANG J F, ZHANG X Y, et al. Trichoderma brevicompactum 6311: prevention and control of Phytophthora capsici and its growth-promoting effect[J]. Journal of Fungi, 2025, 11(2): 105. doi:  10.3390/jof11020105
[30]

LI G L, SHI M X, WAN W H, et al. Maize endophytic plant growth-promoting bacteria Peribacillus simplex can alleviate plant saline and alkaline stress[J]. International Journal of Molecular Sciences, 2024, 25(20): 10870. doi:  10.3390/ijms252010870
[31]

SOLIMAN A, MATAR S, ABO-ZAID G. Production of Bacillus velezensis Strain GB1 as a biocontrol agent and its impact on Bemisia tabaci by inducing systemic resistance in a squash plant[J]. Horticulturae, 2022, 8(6): 511. doi:  10.3390/horticulturae8060511
[32]

KASHYAP N, SINGH S K, YADAV N, et al. Biocontrol screening of endophytes: applications and limitations[J]. Plants, 2023, 12(13): 2480. doi:  10.3390/plants12132480