[1] 韩立德, 盖钧镒, 张文明. 大豆营养成分研究现状[J]. 种子, 2003(5): 57−59. https://doi.org/10.16590/j.cnki.1001-4705.2003.05.081 doi:  10.16590/j.cnki.1001-4705.2003.05.081
[2] 孙永刚. 栽培大豆起源的考古学探索[J]. 中国农史, 2013, 32(5): 3−8.
[3] 赵团结, 盖钧镒. 栽培大豆起源与演化研究进展[J]. 中国农业科学, 2004, 37(7): 954−962. https://doi.org/10.3321/j.issn:0578-1752.2004.07.004 doi:  10.3321/j.issn:0578-1752.2004.07.004
[4] 刘璐璐, 李建飞, 舒跃, 等. 我国大豆生产消费现状及提升自给率策略[J]. 中国油料作物学报, 2022, 44(2): 242−248. https://doi.org/10.19802/j.issn.1007-9084.2022015 doi:  10.19802/j.issn.1007-9084.2022015
[5] 郑祖庭. 2023年国内外大豆市场回顾及2024年展望[J]. 黑龙江粮食, 2024(2): 23−26. https://doi.org/10.3969/j.issn.1671-6019.2024.02.009 doi:  10.3969/j.issn.1671-6019.2024.02.009
[6] 曾小艳, 祁华清, 邓义, 等. 农业农村部《大豆振兴计划实施方案》解读[J]. 农村经济与科技, 2020, 31(18): 36−37. https://doi.org/10.3969/j.issn.1007-7103.2020.18.018 doi:  10.3969/j.issn.1007-7103.2020.18.018
[7] 刘卫国. 不同种植密度对夏大豆农艺性状的影响[J]. 现代农业科技, 2011(5): 51−52. https://doi.org/10.3969/j.issn.1007-5739.2011.05.025 doi:  10.3969/j.issn.1007-5739.2011.05.025
[8] 李莹. 大豆品种产量构成因素的研究[J]. 大豆科学, 1984, 3(3): 209−214.
[9] 吕书财, 徐瑶, 陈国兴, 等. 大豆冠层光合有效辐射、叶面积指数及产量对种植密度的响应[J]. 江苏农业科学, 2018, 46(18): 68−72. https://doi.org/10.15889/j.issn.1002-1302.2018.18.017 doi:  10.15889/j.issn.1002-1302.2018.18.017
[10] 高巍, 吴限, 任海龙. 南繁大豆种子产量相关性状的灰色关联度分析[J]. 种子, 2018, 37(4): 89−91. https://doi.org/10.16590/j.cnki.1001-4705.2018.04.089 doi:  10.16590/j.cnki.1001-4705.2018.04.089
[11]

Fehr W R, Caviness C E. Stages of soybean development [R]. Ames, Iowa: Iowa State University, 1977: 1−11.
[12]

Cooperative Extension Service, Agriculture and Home Economics Experiment Station. Ames, Iowa: Iowa State University, 1977: 1−11. (查阅网上资料, 未找到本条文献信息, 请确认)
[13] 盛帅. 大豆高产栽培技术规程[J]. 河南农业, 2020(31): 49−50. https://doi.org/10.15904/j.cnki.hnny.2020.31.043 doi:  10.15904/j.cnki.hnny.2020.31.043
[14] 邹露阳. 喷灌水肥与种植密度对水氮分布和作物产量的影响[D]. 北京: 中国农业科学院, 2020. https://doi.org/10.27630/d.cnki.gznky.2020.000386
[15]

Dominguez C, Hume D J. Flowering, abortion, and yield of early-maturing soybeans at three densities [J]. Agronomy Journal, 1978, 70(5): 801−805. https://doi.org/10.2134/agronj1978.00021962007000050025x doi:  10.2134/agronj1978.00021962007000050025x
[16] 高超. 播期和密度对夏播带状间作大豆株型、干物质积累和产量的影响[D]. 成都: 四川农业大学, 2023. https://doi.org/10.27345/d.cnki.gsnyu.2023.000065
[17] 杜心田, 王同朝. 作物密度效应递增律及其意义[J]. 河南科学, 2003, 21(6): 733−737. https://doi.org/10.13537/j.issn.1004-3918.2003.06.017 doi:  10.13537/j.issn.1004-3918.2003.06.017
[18] 于晓波, 梁建秋, 何泽民, 等. 株行距配置对大豆农艺性状和产量的影响[J]. 大豆科学, 2021, 40(4): 482−489. https://doi.org/10.11861/j.issn.1000-9841.2021.04.0482 doi:  10.11861/j.issn.1000-9841.2021.04.0482
[19] 付炳堃, 刘天丽, 孙梦遥, 等. 种植密度对快菜叶面积指数动态变化及产量的影响[J]. 华北农学报, 2019, 34(增刊1): 119−123. https://doi.org/10.7668/hbnxb.20190444 doi:  10.7668/hbnxb.20190444
[20]

Xu C L, Li R D, Song W W, et al. High density and uniform plant distribution improve soybean yield by regulating population uniformity and canopy light interception [J]. Agronomy, 2021, 11(9): 1880. https://doi.org/10.3390/agronomy11091880 doi:  10.3390/agronomy11091880
[21] 田晓翠. 大豆蛋白质和油分含量对种植密度响应QTL分析[D]. 哈尔滨: 东北农业大学, 2020. https://doi.org/10.27010/d.cnki.gdbnu.2020.000413
[22] 刘洪彬, 俞艳民. 不同种植密度下大豆生长试验[J]. 种子科技, 2025, 43(15): 10−12. https://doi.org/10.19904/j.cnki.cn14-1160/s.2025.15.004 doi:  10.19904/j.cnki.cn14-1160/s.2025.15.004
[23] 易石武, 熊艺, 刘奕晗, 等. 不同移栽密度和栽插苗数对早稻稻米品质的影响[J]. 湖南农业科学, 2025(6): 16−20. https://doi.org/10.16498/j.cnki.hnnykx.2025.006.003 doi:  10.16498/j.cnki.hnnykx.2025.006.003
[24] 谢运河, 李小红, 王同华, 等. 播期与密度对南方早熟春大豆产量和品质的影响[J]. 作物杂志, 2011(3): 79−82. https://doi.org/10.3969/j.issn.1001-7283.2011.03.020 doi:  10.3969/j.issn.1001-7283.2011.03.020
[25] 孙国伟, 付连舜, 张凤路, 等. 播期及密度对不同大豆品种农艺性状及产量的影响[J]. 大豆科学, 2016, 35(3): 423−427. https://doi.org/10.11861/j.issn.1000-9841.2016.03.0423 doi:  10.11861/j.issn.1000-9841.2016.03.0423
[26] 李殿祥, 门文革, 董金秋. 大豆落花落荚的原因及防治对策[J]. 现代化农业, 2010(4): 23−24. https://doi.org/10.3969/j.issn.1001-0254.2010.04.031 doi:  10.3969/j.issn.1001-0254.2010.04.031
[27] 赵占营. 不同密度对春大豆根系生长及花荚形成的影响[D]. 乌鲁木齐: 新疆农业大学, 2019. https://doi.org/10.27431/d.cnki.gxnyu.2019.000145
[28] 刘欣, 舒泽兵, 封亮, 等. 种植密度对北疆灌区大豆-玉米带状间作混合青贮产量和作物抗倒特性的影响[J]. 四川农业大学学报, 2024, 42(4): 715−723. https://doi.org/10.16036/j.issn.1000-2650.202403341 doi:  10.16036/j.issn.1000-2650.202403341
[29] 张勇. 不同种植密度对大豆生长及产量的影响[J]. 粮油与饲料科技, 2025(1): 83−85.
[30] 李启富. 播期与密度对大豆皖黄506农艺性状及产量的影响[J]. 安徽农学通报, 2024, 30(10): 11−14. https://doi.org/10.3969/j.issn.1007-7731.2024.10.003 doi:  10.3969/j.issn.1007-7731.2024.10.003
[31] 吕书财. 密度对大豆冠层光合有效辐射和抗倒伏特性的影响[D]. 哈尔滨: 东北农业大学, 2017.
[32]

Chen Z K, Niu Y P, Zhao R H, et al. The combination of limited irrigation and high plant density optimizes canopy structure and improves the water use efficiency of cotton [J]. Agricultural Water Management, 2019, 218: 139−148. https://doi.org/10.1016/j.agwat.2019.03.037 doi:  10.1016/j.agwat.2019.03.037
[33]

Ren H, Cheng Y, Li R F, et al. Integrating density and fertilizer management to optimize the accumulation, remobilization, and distribution of biomass and nutrients in summer maize [J]. Scientific Reports, 2020, 10(1): 11777. https://doi.org/10.1038/s41598-020-68730-8 doi:  10.1038/s41598-020-68730-8
[34]

Ren Y Y, Liu J J, Wang Z L, et al. Planting density and sowing proportions of maize-soybean intercrops affected competitive interactions and water-use efficiencies on the Loess Plateau, China [J]. European Journal of Agronomy, 2016, 72: 70−79. https://doi.org/10.1016/j.eja.2015.10.001 doi:  10.1016/j.eja.2015.10.001
[35]

Echarte L, Maggiora A D, Cerrudo D, et al. Yield response to plant density of maize and sunflower intercropped with soybean [J]. Field Crops Research, 2011, 121(3): 423−429. https://doi.org/10.1016/j.fcr.2011.01.011 doi:  10.1016/j.fcr.2011.01.011
[36] 于洪久. 种植密度对大豆光合生理及产量的影响[J]. 大豆科学, 2009, 28(6): 1115−1118.
[37] 王淑玉. 不同种植密度对大豆产量及农艺性状的影响[J]. 农业技术与装备, 2023(12): 149−150. https://doi.org/10.3969/j.issn.1673-887X.2023.12.053 doi:  10.3969/j.issn.1673-887X.2023.12.053
[38] 徐婷. 播期和密度对套作大豆光合特性、干物质积累及产量的影响[D]. 成都: 四川农业大学, 2014.