[1] |
李宇亮, 高宇, 郑新庆, 等. 珊瑚礁生态系统功能产生机制及评价方法[J]. 应用海洋学学报, 2022, 41(3): 475 − 482. doi: 10.3969/J.ISSN.2095-4972.2022.03.012 |
[2] |
CARPENTER K E, ABRAR M, AEBY G, et al. One-third of reef-building corals face elevated extinction risk from climate change and local impacts[J]. Science, 2008, 321(5888): 560 − 563. doi: 10.1126/science.1159196 |
[3] |
陈燕, 李成才, 晁飞飞, 等. 环境因子对造礁石珊瑚白化影响的研究进展及思考[J]. 黑龙江科技信息, 2016(2): 129 − 130. doi: 10.3969/j.issn.1673-1328.2016.02.114 |
[4] |
MOBERG F, NYSTRÖM M, KAUTSKY N, et al. Effects of reduced salinity on the rates of photosynthesis and respiration in the hermatypic corals Porites lutea and Pocillopora damicornis[J]. Marine Ecology Progress Series, 1997, 157: 53 − 59. doi: 10.3354/meps157053 |
[5] |
HOEGH-GULDBERG O. Climate change, coral bleaching and the future of the world’s coral reefs[J]. Marine and Freshwater Research, 1999, 50(8): 839 − 866. doi: 10.1071/MF99078 |
[6] |
BERKELMANS R, OLIVER J K. Large-scale bleaching of corals on the great barrier reef[J]. Coral Reefs, 1999, 18(1): 55 − 60. doi: 10.1007/s003380050154 |
[7] |
HOEGH-GULDBERG O, SMITH G J. The effect of sudden changes in temperature, light and salinity on the population density and export of zooxanthellae from the reef corals Stylophora pistillata Esper and Seriatopora hystrix Dana[J]. Journal of Experimental Marine Biology and Ecology, 1989, 129(3): 279 − 303. doi: 10.1016/0022-0981(89)90109-3 |
[8] |
HAAPKYLÄ J, UNSWORTH R K F, FLAVELL M, et al. Seasonal rainfall and runoff promote coral disease on an inshore reef[J]. PLoS One, 2011, 6(2): e16893. doi: 10.1371/journal.pone.0016893 |
[9] |
李泽鹏. 主要环境因子对滨珊瑚的胁迫作用研究[D]. 湛江: 广东海洋大学, 2012. doi: 10.7666/d.Y2215224 |
[10] |
FALKOWSKI P G, DUBINSKY Z, MUSCATINE L, et al. Light and the bioenergetics of a symbiotic coral[J]. BioScience, 1984, 34(11): 705 − 709. doi: 10.2307/1309663 |
[11] |
MUTHIGA N A, SZMANT A M. The effects of salinity stress on the rates of aerobic respiration and photosynthesis in the hermatypic coral Siderastrea siderea[J]. The Biological Bulletin, 1987, 173(3): 539 − 551. doi: 10.2307/1541699 |
[12] |
MANZELLO D, LIRMAN D. The photosynthetic resilience of Porites furcata to salinity disturbance[J]. Coral Reefs, 2003, 22(4): 537 − 540. doi: 10.1007/s00338-003-0327-0 |
[13] |
KUANUI P, CHAVANICH S, VIYAKARN V, et al. Effects of temperature and salinity on survival rate of cultured corals and photosynthetic efficiency of zooxanthellae in coral tissues[J]. Ocean Science Journal, 2015, 50(2): 263 − 268. doi: 10.1007/s12601-015-0023-3 |
[14] |
LOBBAN C S, HARRISON P J. Seaweed ecology and physiology[J]. Choice Online, 1995, 32(6): 32-3297. (查阅网上资料, 未找到本条文献信息, 请确认) |
[15] |
KERSWELL A P, JONES R J. Effects of hypo-osmosis on the coral Stylophora pistillata: nature and cause of ‘low-salinity bleaching’[J]. Marine Ecology Progress Series, 2003, 253: 145 − 154. doi: 10.3354/meps253145 |
[16] |
DOWNS C A, KRAMARSKY-WINTER E, WOODLEY C M, et al. Cellular pathology and histopathology of hypo-salinity exposure on the coral Stylophora pistillata[J]. Science of the Total Environment, 2009, 407(17): 4838 − 4851. doi: 10.1016/j.scitotenv.2009.05.015 |
[17] |
SAKAMI T. Effects of temperature, irradiance, salinity and inorganic nitrogen concentration on coral zooxanthellae in culture[J]. Fisheries Science, 2000, 66(6): 1006 − 1013. doi: 10.1046/j.1444-2906.2000.00162.x |
[18] |
WANG J, CHEN J Q, WANG S Y, et al. Monoclonal culture and characterization of Symbiodiniaceae C1 strain from the scleractinian coral Galaxea fascicularis[J]. Frontiers in Physiology, 2021, 11: 621111. doi: 10.3389/fphys.2020.621111 |
[19] |
龙超, 罗肇河, 韦章良, 等. 海南三亚鹿回头虫黄藻(Effrenium voratum)的形态学和系统发育学研究[J]. 热带海洋学报, 2021, 40(4): 35 − 43. doi: 10.11978/2020102 |
[20] |
LAJEUNESSE T C, PARKINSON J E, GABRIELSON P W, et al. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts[J]. Current Biology, 2018, 28(16): 2570-2580. e6. doi: 10.1016/j.cub.2018.07.008 |
[21] |
KANG N S, KIM E S, LEE J A, et al. First report of the dinoflagellate genus Effrenium in the East Sea of Korea: morphological, genetic, and fatty acid characteristics[J]. Sustainability, 2020, 12(9): 3928. doi: 10.3390/su12093928 |
[22] |
刘旭. 造礁石珊瑚对温度胁迫的响应机制研究[D]. 南宁: 广西大学, 2020. doi: 10.27034/d.cnki.ggxiu.2020.001544 |
[23] |
XU Z Z, JIANG Y L, ZHOU G S. Response and adaptation of photosynthesis, respiration, and antioxidant systems to elevated CO2 with environmental stress in plants[J]. Frontiers in Plant Science, 2015, 6: 701. doi: 10.3389/fpls.2015.00701 |
[24] |
MCCOY S J, KAMENOS N A. Coralline algae (Rhodophyta) in a changing world: integrating ecological, physiological, and geochemical responses to global change[J]. Journal of Phycology, 2015, 51(1): 6 − 24. doi: 10.1111/jpy.12262 |
[25] |
LESSER M P. OXIDATIVE STRESS IN MARINE ENVIRONMENTS: biochemistry and physiological ecology[J]. Annual Review of Physiology, 2006, 68: 253 − 278. doi: 10.1146/annurev.physiol.68.040104.110001 |
[26] |
DOWNS C A, FAUTH J E, HALAS J C, et al. Oxidative stress and seasonal coral bleaching[J]. Free Radical Biology and Medicine, 2002, 33(4): 533 − 543. doi: 10.1016/S0891-5849(02)00907-3 |
[27] |
杨晓红. 高温及营养缺乏诱导虫黄藻氧化胁迫的初步研究[D]. 厦门: 厦门大学, 2020. doi: 10.27424/d.cnki.gxmdu.2020.000447 |
[28] |
ASADA K. THE WATER-WATER CYCLE IN CHLOROPLASTS: scavenging of active oxygens and dissipation of excess photons[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1999, 50: 601 − 639. doi: 10.1146/annurev.arplant.50.1.601 |
[29] |
BYCZKOWSKI J Z, GESSNER T. Biological role of superoxide ion-radical[J]. International Journal of Biochemistry, 1988, 20(6): 569 − 580. doi: 10.1016/0020-711X(88)90095-X |
[30] |
CZIESIELSKI M J, SCHMIDT-ROACH S, ARANDA M. The past, present, and future of coral heat stress studies[J]. Ecology and Evolution, 2019, 9(17): 10055 − 10066. doi: 10.1002/ece3.5576 |
[31] |
蒙林庆, 黄雯, 阳恩广, 等. 高温白化事件可提高涠洲岛澄黄滨珊瑚(Porites lutea)的耐热性[J]. 海洋学报, 2022, 44(8): 87 − 96. doi: 10.12284/hyxb2022126 |
[32] |
MISHRA S, IMLAY J. Why do bacteria use so many enzymes to scavenge hydrogen peroxide?[J]. Archives of Biochemistry and Biophysics, 2012, 525(2): 145 − 160. doi: 10.1016/j.abb.2012.04.014 |
[33] |
VANAPORN M, WAND M, MICHELL S L, et al. Superoxide dismutase C is required for intracellular survival and virulence of Burkholderia pseudomallei[J]. Microbiology, 2011, 157(Pt 8): 2392 − 2400. doi: 10.1099/mic.0.050823-0 |
[34] |
FRIDOVICH I. Superoxide radical and superoxide dismutases[M]//GILBERT D L. Oxygen and living processes. New York, NY: Springer, 1981: 250 − 272. doi: 10.1007/978-1-4612-5890-2_13 |
[35] |
VENN A A, LORAM J E, DOUGLAS A E. Photosynthetic symbioses in animals[J]. Journal of Experimental Botany, 2008, 59(5): 1069 − 1080. doi: 10.1093/jxb/erm328 |
[36] |
MCGINTY E S, PIECZONKA J, MYDLARZ L D. Variations in reactive oxygen release and antioxidant activity in multiple Symbiodinium types in response to elevated temperature[J]. Microbial Ecology, 2012, 64(4): 1000 − 1007. doi: 10.1007/s00248-012-0085-z |
[37] |
DIAS M, MADEIRA C, JOGEE N, et al. Oxidative stress on scleractinian coral fragments following exposure to high temperature and low salinity[J]. Ecological Indicators, 2019, 107: 105586. doi: 10.1016/j.ecolind.2019.105586 |
[38] |
FREIRE C A, WELKER A F, STOREY J M, et al. Oxidative stress in estuarine and intertidal environments (temperate and tropical)[M]//ABELE D, VÁZQUEZ-MEDINA J P, ZENTENO-SAVIN T. Oxidative stress in aquatic ecosystems. Chichester: Wiley-Blackwell, 2011: 41-57. doi: 10.1002/9781444345988.ch3 |
[39] |
DING D S, WANG S H, SUN W T, et al. The effect of feeding on Briareum violacea growth, survival and larval development under temperature and salinity stress[J]. Biology, 2022, 11(3): 410. doi: 10.3390/biology11030410 |