[1] |
曹欣, 唐燕琼, 李宏, 等. Flag-ALD融合载体构建及蛋白表达[J]. 热带生物学报, 2020, 11(2): 132 − 137. |
[2] |
BHOWMICK U D, BHATTACHARJEE S. Bacteriological, Clinical and virulence aspects of Aeromonas-associated diseases in humans [J]. Polish Journal of Microbiology, 2018, 67(2): 137 − 149. doi: 10.21307/pjm-2018-020 |
[3] |
LI T, WANG Z, HAN H, et al. Dual Antibacterial activities and biofilm eradication of a marine peptide-N6NH2 and its analogs against multidrug-resistant Aeromonas veronii [J]. International Journal of Molecular Sciences, 2020, 21(24): 1 − 28. |
[4] |
SONG M F, KANG Y H, ZHANG D X, et al. Immunogenicity of extracellular products from an inactivated vaccine against Aeromonas veronii TH0426 in Koi, Cyprinus Carpio [J]. Fish and Shellfish Immunology, 2018, 81: 176 − 181. doi: 10.1016/j.fsi.2018.07.004 |
[5] |
REYES-BECERRIL M, ANGULO C, ASCENCIO F. Humoral immune response and TLR9 gene expression in Pacific red snapper (Lutjanus peru) experimentally exposed to Aeromonas veronii [J]. Fish and Shellfish Immunology, 2015, 42(2): 289 − 296. doi: 10.1016/j.fsi.2014.11.002 |
[6] |
HOAI T D, TRANG T T, VAN TUYEN N, et al. Aeromonas veronii caused disease and mortality in channel catfish in Vietnam [J]. Aquaculture, 2019, 513: 734425. doi: 10.1016/j.aquaculture.2019.734425 |
[7] |
HUANG H, ZHOU P, CHEN P, et al. Alteration of the gut microbiome and immune factors of grass carp infected with Aeromonas veronii and screening of an antagonistic bacterial strain (Streptomyces flavotricini) [J]. Microbial Pathogenesis, 2020, 143: 104092. doi: 10.1016/j.micpath.2020.104092 |
[8] |
SILVER A C, WILLIAMS D, FAUCHER J, et al. Complex evolutionary history of the Aeromonas veronii Group Revealed by Host Interaction and DNA Sequence Data [J]. PLoS ONE, 2011, 6(2): e16751. doi: 10.1371/journal.pone.0016751 |
[9] |
MOLINARI L M, DE OLIVEIRA SCOARIS D, PEDROSO R B, et al. Bacterial Microflora in the gastrointestinal tract of Nile tilapia, Oreochromis niloticus, cultured in a semi-intensive system [J]. Acta Scientiarum - Biological Sciences, 2003, 25(2): 267 − 271. |
[10] |
IWANICKA-NOWICKA R, HRYNIEWICZ M. A new gene, Cbl, encoding a member of the LysR family of transcriptional regulators belongs to Escherichia coli Cys Regulon [J]. Gene, 1995, 166(1): 11 − 17. doi: 10.1016/0378-1119(95)00606-8 |
[11] |
VAN DER PLOEG J R, IWANICKA-NOWICKA R, BYKOWSKI T, et al. The Escherichia coli ssuEADCB gene cluster is required for the utilization of sulfur from aliphatic sulfonates and is regulated by the transcriptional activator Cbl [J]. Journal of Biological Chemistry, 1999, 274(41): 29358 − 29365. doi: 10.1074/jbc.274.41.29358 |
[12] |
VAN DER PLOEG J R, IWANICKA-NOWICKA R, KERTESZ M A, et al. Involvement of CysB and Cbl regulatory proteins in expression of the TauABCD operon and other sulfate starvation-inducible genes in Escherichia coli [J]. Journal of Bacteriology, 1997, 179(24): 7671 − 7678. doi: 10.1128/JB.179.24.7671-7678.1997 |
[13] |
VAN DER PLOEG J R, EICHHORN E, Leisinger T. Sulfonate-sulfur metabolism and its regulation in Escherichia coli [J]. Archives of Microbiology, 2001, 176(1/2): 1 − 8. |
[14] |
IWANICKA-NOWICKA R, ZIELAK A, COOK A M, et al. Regulation of sulfur assimilation pathways in Burkholderia cenocepacia: Identification of transcription factors CysB and SsuR and their role in control of target genes [J]. Journal of Bacteriology, 2007, 189(5): 1675 − 1688. doi: 10.1128/JB.00592-06 |
[15] |
ÁLVAREZ R, NEUMANN G, FRÁVEGA J, et al. CysB-dependent upregulation of the Salmonella typhimurium CysJIH operon in response to antimicrobial compounds that induce oxidative stress [J]. Biochemical and Biophysical Research Communications, 2015, 458(1): 46 − 51. doi: 10.1016/j.bbrc.2015.01.058 |
[16] |
MIRONOV A, SEREGINA T, NAGORNYKH M, et al. Mechanism of H2S-mediated protection against oxidative stress in Escherichia coli [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(23): 6022 − 6027. doi: 10.1073/pnas.1703576114 |
[17] |
GUI J F, ZHU Z Y. Molecular basis and genetic improvement of economically important traits in Aquaculture Animals [J]. Chinese Science Bulletin., 2012, 57(15): 1751 − 1760. doi: 10.1007/s11434-012-5213-0 |
[18] |
LI T, YANG B, SUN Y, et al. Aeromonas veronii infection in commercial freshwater fish: A potential threat to public health [J]. Animals, 2020, 10(4): 608. doi: 10.3390/ani10040608 |
[19] |
GONZÁLEZ-SERRANO C J, SANTOS J A, GARCÍA-LÓPEZ M L, et al. Virulence markers in Aeromonas hydrophila and Aeromonas veronii biovar sobria isolates from freshwater fish and from a diarrhoea case [J]. Journal of Applied Microbiology, 2002, 93(3): 414 − 419. doi: 10.1046/j.1365-2672.2002.01705.x |
[20] |
PEARSON M D, HIRONO I, AOKI T, et al. Virulence properties of motile Aeromonas isolated from farmed frogs Rana tigerina and R. rugulosa [J]. Diseases of Aquatic Organisms, 2000, 40(3): 185 − 193. |
[21] |
PUND R P, THEEGARTEN D. The Importance of Aeromonas as a Human Pathogen [J]. Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz, 2008, 51(5): 569 − 576. doi: 10.1007/s00103-008-0531-8 |
[22] |
VAN DER PLOEG J R, WEISS M A, SALLER E, et al. Identification of sulfate starvation-regulated genes in Escherichia coli: A gene cluster involved in the utilization of taurine as a sulfur source [J]. Journal of Bacteriology, 1996, 178(18): 5438 − 5446. doi: 10.1128/JB.178.18.5438-5446.1996 |
[23] |
MENG X, WOLFE S A. Identifying DNA sequences recognized by a transcription factor using a bacterial one-hybrid system [J]. Nature Protocols, 2006, 1(1): 30 − 45. doi: 10.1038/nprot.2006.6 |
[24] |
BYKOWSKI T, VAN DER PLOEG J R, IWANICKA-NOWICKA R, et al. The switch from inorganic to organic sulphur assimilation in Escherichia coli: Adenosine 5′-Phosphosulphate (APS) as a signaling molecule for sulphate excess [J]. Molecular Microbiology, 2002, 43(5): 1347 − 1358. doi: 10.1046/j.1365-2958.2002.02846.x |
[25] |
STEC E, WITKOWSKA-ZIMNY M, HRYNIEWICZ M M, et al. Structural basis of the sulphate starvation response in E. coli: Crystal structure and mutational analysis of the cofactor-binding domain of the Cbl transcriptional regulator [J]. Journal of Molecular Biology, 2006, 364(3): 309 − 322. doi: 10.1016/j.jmb.2006.06.033 |
[26] |
SHATALIN K, SHATALINA E, MIRONOV A, et al. H2S: A universal defense against antibiotics in bacteria [J]. Science, 2011, 334(6058): 986 − 990. doi: 10.1126/science.1209855 |