[1] 索宁宁, 张艳芳, 高圆丽, 等. 山药块茎膨大期淀粉积累及淀粉合成相关基因表达分析[J]. 中国瓜菜, 2023, 36(3): 69 − 76. doi:  10.3969/j.issn.1673-2871.2023.03.012
[2] 夏薇, 吴文嫱, 许云, 等. 大薯种质资源多样性研究进展[J]. 植物生理学报, 2017, 53(5): 781 − 784.
[3] 张青, 赵景梅, 黄东益, 等. 大薯病程相关蛋白1(PR1)基因及其启动子序列的克隆与分析[J]. 分子植物育种, 2018, 16(7): 2078 − 2084.
[4] 刘林娅, 黄亚成, 黄小龙, 等. 薯蓣植物块茎特异蛋白Dioscorin的研究进展[J]. 植物学报, 2016, 51(2): 274 − 280. doi:  10.11983/CBB15072
[5]

ZHU J K. Abiotic stress signaling and responses in plants[J]. Cell, 2016, 167(2): 313 − 324. doi:  10.1016/j.cell.2016.08.029
[6] 龚蓉. 水稻OsGBP转录因子家族基因的功能研究及雌雄配子不育基因MFS的定位与功能分析 [D]. 武汉: 华中农业大学, 2018.
[7] 赵东波, 管培燕, 郭智慧, 等. 玉米BBR-BPC基因家族全基因组鉴定及表达分析[J]. 玉米科学, 2023, 31(3): 58 − 66.
[8]

LEE Y C, TSAI P T, HUANG X X, et al. Family members additively repress the ectopic expression of BASIC PENTACYSTEINE3 to prevent disorders in Arabidopsis circadian vegetative development[J]. Frontiers in Plant Science, 2022, 13: 919946. doi:  10.3389/fpls.2022.919946
[9]

THEUNE M L, BLOSS U, BRAND L H, et al. Phylogenetic analyses and GAGA-motif binding studies of BBR/BPC proteins lend to clues in GAGA-motif recognition and a regulatory role in brassinosteroid signaling[J]. Frontiers in Plant Science, 2019, 10: 466. doi:  10.3389/fpls.2019.00466
[10]

MISHRA K, CHOPRA V S, SRINIVASAN A, et al. Trl-GAGA directly interacts with Lola like and both are part of the repressive complex of Polycomb group of genes[J]. Mechanisms of Development, 2003, 120(6): 681 − 689. doi:  10.1016/S0925-4773(03)00046-7
[11]

OGIYAMA Y, SCHUETTENGRUBER B, PAPADOPOULOS G L, et al. Polycomb-dependent chromatin looping contributes to gene silencing during Drosophila development[J]. Molecular Cell, 2018, 71(1): 73 − 88. doi:  10.1016/j.molcel.2018.05.032
[12]

LANG D, WEICHE B, TIMMERHAUS G, et al. Genome-wide phylogenetic comparative analysis of plant transcriptional regulation: a timeline of loss, gain, expansion, and correlation with complexity[J]. Genome Biology and Evolution, 2010, 2: 488 − 503. doi:  10.1093/gbe/evq032
[13]

WANKE D, HOHENSTATT M L, DYNOWSKI M, et al. Alanine zipper-like coiled-coil domains are necessary for homotypic dimerization of plant GAGA-factors in the nucleus and nucleolus[J]. PLoS One, 2011, 6(2): e16070. doi:  10.1371/journal.pone.0016070
[14]

SANTI L, WANG Y, STILE M R, et al. The GA octodinucleotide repeat binding factor BBR participates in the transcriptional regulation of the homeobox gene Bkn3[J]. Plant Journal, 2010, 34(6): 813 − 826.
[15]

MONFARED M M, SIMON M K, MEISTER R J, et al. Overlapping and antagonistic activities of BASIC PENTACYSTEINE genes affect a range of developmental processes in Arabidopsis[J]. The Plant Journal, 2011, 66(6): 1020 − 1031. doi:  10.1111/j.1365-313X.2011.04562.x
[16]

HECKER A, BRAND L H, PETER S, et al. The Arabidopsis gaga-Binding Factor basic pentacysteine6 Recruits the polycomb-repressive complex1 Component like heterochromatin protein1 to Gaga DNA Motifs[J]. Plant Physiology, 2015, 168(3): 1013 − 1024. doi:  10.1104/pp.15.00409
[17]

SIMONINI S, KATER M M. Class I BASIC PENTACYSTEINE factors regulate HOMEOBOX genes involved in meristem size maintenance[J]. Journal of Experimental Botany, 2014, 65(6): 1455 − 1465. doi:  10.1093/jxb/eru003
[18]

MU Y, ZOU M, SUN X, et al. BASIC PENTACYSTEINE proteins repress ABSCISIC ACID INSENSITIVE4 expression via direct recruitment of the polycomb-repressive complex 2 in Arabidopsis root development[J]. Plant & Cell Physiology, 2017, 58(3): 607 − 621.
[19]

MEISTER R J, WILLIAMS L A, MONFARED M M, et al. Definition and interactions of a positive regulatory element of the Arabidopsis INNER NO OUTER promoter[J]. Plant Journal, 2004, 37(3): 426 − 438. doi:  10.1046/j.1365-313X.2003.01971.x
[20]

KOOIKER M, AIROLDI C A, LOSA A, et al. BASIC PENTACYSTEINE1 a GA binding protein that induces conformational changes in the regulatory region of the homeotic Arabidopsis gene SEEDSTICK[J]. The Plant Cell, 2005, 17(3): 722 − 729. doi:  10.1105/tpc.104.030130
[21]

SIMONINI S, ROIG-VILLANOVA I, GREGIS V, et al. Basic pentacysteine proteins mediate MADS domain complex binding to the DNA for tissue-specific expression of target genes in Arabidopsis[J]. Plant Cell, 2012, 24(10): 4163 − 4172. doi:  10.1105/tpc.112.103952
[22]

WU J, MOHAMED D, DOWHANIK S, et al. Spatiotemporal restriction of FUSCA3 expression by class I BPCs promotes ovule development and coordinates embryo and endosperm growth[J]. The Plant Cell, 2020, 32(6): 1886 − 1904. doi:  10.1105/tpc.19.00764
[23]

LAO Z, MAO J, CHEN R, et al. Genome-wide identification and characterization of BASIC PENTACYSTEINE transcription factors and their binding motifs in coconut palm[J]. Frontiers in Plant Science, 2024, 15: 1491139. doi:  10.3389/fpls.2024.1491139
[24]

WAI A H, DIVYA D, PARK J I, et al. Genome wide identification of BBP/BPC transcription factor in tomato and its expression profiling in response to abiotic stress[J]. Plant Biotechnology Reports, 2024, 18(6): 759 − 776. doi:  10.1007/s11816-024-00927-z
[25]

BERGER N, DUBREUCQ B. Evolution goes GAGA: GAGA binding proteins across Kingdoms[J]. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 2012, 1819(8): 863 − 868. doi:  10.1016/j.bbagrm.2012.02.022
[26]

SUN H, PANG B, YAN J, et al. Comprehensive analysis of cucumber gibberellin oxidase family genes and functional characterization of CsGA20ox1 in root development in Arabidopsis[J]. International Journal of Molecular Sciences, 2018, 19(10): 3135. doi:  10.3390/ijms19103135
[27]

LAO Z, MAO J, CHEN R, et al. Genome-wide identification and characterization of BASIC PENTACYSTEINE transcription factors and their binding motifs in coconut palm[J]. Frontiers in Plant Science, 2024, 15: 1491139. doi:  10.3389/fpls.2024.1491139
[28]

SAHU A, SINGH R, VERMA P K. Plant BBR/BPC transcription factors: unlocking multilayered regulation in development, stress and immunity[J]. Planta, 2023, 258(2): 31. doi:  10.1007/s00425-023-04188-y
[29]

YANG Q, LI B, RIZWAN H M, et al. Genome-wide identification and comprehensive analyses of NAC transcription factor gene family and expression analysis under Fusarium kyushuense and drought stress conditions in Passiflora edulis[J]. Frontiers in Plant Science, 2022, 13: 972734. doi:  10.3389/fpls.2022.972734
[30]

AKOND Z, RAHMAN H, AHSAN M A, et al. Comprehensive In silico analysis of RNA silencing-related genes and their regulatory elements in wheat (Triticum aestivum L.)[J]. BioMed Research International, 2022, 2022: 4955209. doi:  10.1155/2022/4955209
[31]

WU J, MOHAMED D, DOWHANIK S, et al. Spatiotemporal restriction of FUSCA3 expression by class I BPCs promotes ovule development and coordinates embryo and endosperm growth[J]. The Plant Cell, 2020, 32(6): 1886 − 1904. doi:  10.1105/tpc.19.00764
[32] 程文杰. 大薯种质资源遗传多样性分析 [D]. 海口: 海南大学, 2010.
[33]

KUMAR D, WAREING P F. Factors controlling stolon development in the potato plant[J]. New Phytologist, 1972, 71(4): 639 − 648. doi:  10.1111/j.1469-8137.1972.tb01274.x
[34]

LI W, ZHANG J, SUN H, et al. FveRGA1, encoding a DELLA protein, negatively regulates runner production in Fragaria vesca[J]. Planta, 2018, 247(4): 941 − 951. doi:  10.1007/s00425-017-2839-9
[35]

ZENTELLA R, ZHANG Z L, PARK M, et al. Global analysis of della direct targets in early gibberellin signaling in Arabidopsis[J]. The Plant Cell, 2007, 19(10): 3037 − 3057. doi:  10.1105/tpc.107.054999
[36]

LI S, SUN M, MIAO L, et al. Multifaceted regulatory functions of CsBPC2 in cucumber under salt stress conditions[J]. Horticulture Research, 2023, 10(5): 142 − 154.
[37]

ZHAO H, WAN S, HUANG Y, et al. The transcription factor MdBPC2 alters apple growth and promotes dwarfing by regulating auxin biosynthesis[J]. The Plant Cell, 2024, 36(3): 585 − 604. doi:  10.1093/plcell/koad297