[1] TAKESHI I, KO S. Becoming a model plant: The importance of rice to plant science [J]. Trends Plant Sci, 2009, 1(3): 95 − 99.
[2] 肖景华, 吴昌银, 袁猛, 等. 中国水稻功能基因组研究进展与展望[J]. 科学通报, 2015, 60(18): 1711 − 1712.
[3]

WANG B, SMITH M, LI J. Genetic regulation of shoot architecture [J]. Annu Rev Plant Biol, 2018, 69(25): 437 − 468.
[4]

FIEHN O. Metabolomics: the link between genotypes and phenotypes [J]. Plant Mol Biol, 2002, 48(1/2): 155 − 171. doi:  10.1023/A:1013713905833
[5]

LIANG W H, SHANG F, LIN Q T, et al. Tillering and panicle branching genes in rice [J]. Gene, 2014, 537(1): 1 − 5. doi:  10.1016/j.gene.2013.11.058
[6]

HU Z, YAN H, YANG J, et al. Strigolactones negatively regulate mesocotyl elongation in rice during germination and growth in darkness [J]. Plant Cell Physiol, 2010, 51(7): 1136 − 1142. doi:  10.1093/pcp/pcq075
[7]

LIN H, WANG R, QIAN, Q, et al. DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth [J]. Plant Cell, 2009, 21(5): 1512 − 1525. doi:  10.1105/tpc.109.065987
[8] 李丛丛, 马小定, 马建. 一个新的水稻D17/HTD1基因等位突变体的分子鉴定[J]. 植物遗传资源学报, 2019, 20(5): 1255 − 1261.
[9]

ZOU J, ZHANG S, ZHANG W, et al. The rice HIGH‐TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds [J]. Plant J, 2006, 48(5): 687 − 698. doi:  10.1111/j.1365-313X.2006.02916.x
[10]

ARITE T, IWATA H, OHSHIMA K, et al. DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice [J]. Plant J, 2007, 51(6): 1019 − 1029. doi:  10.1111/j.1365-313X.2007.03210.x
[11]

ZHANG Y, VAN DIJK AD, SCAFFIDI A, et al. Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis [J]. Nat Chem Biol, 2014, 10(12): 1028 − 1033. doi:  10.1038/nchembio.1660
[12]

ISHIKAWA S, MAEKAWA M, ARITE T, et al. Suppression of tiller bud activity in tillering dwarf mutants of rice [J]. Plant Cell Physiol, 2005, 46(1): 79 − 86. doi:  10.1093/pcp/pci022
[13]

WANG W, LI Y, DANG P, et al. Rice secondary metabolites: structures, roles, biosynthesis, and metabolic regulation [J]. Molecules, 2018, 23(12): 3098. doi:  10.3390/molecules23123098
[14]

ALI G, NEDA G. Flavonoids and phenolic acids: role and biochemical activity in plants and human [J]. J Med Plants Res, 2011, 5(31): 6697 − 6703.
[15]

DAYAN F E, CANTRELL C L, DUKE S O. Natural products in crop protection [J]. Bioorg Med Chem, 2009, 17(12): 4022 − 4034. doi:  10.1016/j.bmc.2009.01.046
[16]

NASIR F, TIAN L, SHI S, et al. Strigolactones positively regulate defense against Magnaporthe oryzae in rice (Oryza sativa) [J]. Plant Physiol Bioch, 2019, 142(4): 106 − 116.
[17]

CHEN F, JIANG L, ZHENG J, et al. Identification of differentially expressed proteins and phosphorylated proteins in rice seedlings in response to strigolactone treatment [J]. Plos One, 2014, 9(4): e93947. doi:  10.1371/journal.pone.0093947
[18]

YAMADA Y, FURUSAWA S, NAGASAKA S, et al. Strigolactone signaling regulates rice leaf senescence in response to a phosphate deficiency [J]. Planta, 2014, 240(2): 399 − 408. doi:  10.1007/s00425-014-2096-0
[19]

KUMAR M, PANDYA-KUMAR N, KAPULNIK Y, et al. Strigolactone signaling in root development and phosphate starvation [J]. Plant Signal Behav, 2015, 10(7): e1045174. doi:  10.1080/15592324.2015.1045174
[20]

ITO S, NOZOYE T, SASAKI E, et al. Strigolactone regulates anthocyanin accumulation, acid phosphatases production and plant growth under low phosphate condition in Arabidopsis [J]. Plos One, 2015, 10(3): e0119724. doi:  10.1371/journal.pone.0119724
[21]

ZHANG Z, HU Q, LIU Y, CHENG P, et al. Strigolactone represses the synthesis of melatonin, thereby inducing floral transition in Arabidopsis thaliana in an FLC-dependent manner [J]. J Pineal Res, 2019, 67(2): e12582.
[22]

WALTON A, STES E, GOEMINNE G, et al. The response of the root proteome to the synthetic strigolactone GR24 in Arabidopsis [J]. Mol Cell Proteomics, 2016, 15(8): 2744 − 2755. doi:  10.1074/mcp.M115.050062
[23]

LIU H, LI X, XIAO J, et al. A convenient method for simultaneous quantification of multiple phytohormones and metabolites: application in study of rice-bacterium interaction [J]. Plant Methods, 2012, 8(2): 2.
[24]

YOAV B DANIEL Y. The control of the false discovery rate in multiple testing under dependency [J]. Ann Stat, 2001, 29(4): 1165 − 1188. doi:  10.1214/aos/1013699998
[25]

GAUVREAU K, PAGANO M. Why 5%[J] Nutrition, 1994, 10(1): 93 − 94.
[26] 许佳妮, 邓丽莉, 曾凯芳. 磷脂酶D在果蔬采后逆境胁迫及衰老过程中的作用[J]. 食品工业科技, 2014, 36(5): 393 − 399.
[27]

VISMANS G, MEER T, LANGEVOORT O, et al. Low phosphate induction of plastidal stromules is dependent on strigolactones but not on the canonical strigolactone signaling component MAX2 [J]. Plant Physiol, 2016, 172(4): 2235 − 2244. doi:  10.1104/pp.16.01146
[28]

TONG C, LIE L, DANIEL L E W, et al. Association mapping and marker development of genes for starch lysophospholipid synthesis in rice [J]. Rice Sci, 2016, 23(6): 287 − 296. doi:  10.1016/j.rsci.2016.09.002
[29]

YONG Q, ZHENG N K, PEDRO G. Strigolactones restore vegetative and reproductive developments in Huanglongbing (HLB) affected, greenhouse-grown citrus trees by modulating carbohydrate distribution [J]. Sci Hortic-amstetdam, 2018, 237(1): 89 − 95.
[30]

THUSSAGUNPANIT J, NAGAI Y, NAGAE M, et al. Involvement of STH7 in light-adapted development in Arabidopsis thaliana promoted by both strigolactone and karrikin [J]. Biosci Biotechnol Biochem, 2017, 81(2): 292 − 301. doi:  10.1080/09168451.2016.1254536
[31]

FERRERO M, PAGLIARANI C, NOVAK O, et al. Exogenous strigolactone interacts with abscisic acid-mediated accumulation of anthocyanins in grapevine berries [J]. J Exp Bot, 2018, 69(9): 2391 − 2401. doi:  10.1093/jxb/ery033