[1] 陈秋惠, 杨玉双, 覃碧, 等. 橡胶草育种研究进展[J/OL]. 分子植物育种, 1−15(2023-12-16)[2025-02-07]. http://kns.cnki.net/kcms/detail/46.1068.S.20231215.0914.002.html.
[2] 张在宝, 王涵, 罗天, 等. 橡胶草育种及橡胶提取工艺研究进展[J/OL]. 宁夏大学学报(自然科学版), 1−8(2023-05-06)[2025-02-07]. http://kns.cnki.net/kcms/detail/64.1006.N.20230504.1519.022.html.
[3] 贺俊亚, 杨雪, 邢剑锋, 等. 橡胶草TCTP基因家族的鉴定及表达分析[J/OL]. 分子植物育种, 1−18(2023-11-15)[2025-02-07]. http://kns.cnki.net/kcms/detail/46.1068.S.20231114.1714.022.html.
[4] 刘星, 杨雪, 张芳, 等. 橡胶草乳管特异性高表达基因TkREF的启动子区段鉴定[J]. 分子植物育种, 2025, 23(4): 1154 − 1163.
[5] 李闯, 王肖肖, 杨玉双, 等. 橡胶草Tk-bZIP11转录因子基因的克隆及其表达模式分析[J]. 分子植物育种, 2024, 22(5): 1444 − 1453.
[6]

MA Y, XU J, QI J, et al. Crosstalk among plant hormone regulates the root development[J]. Plant Signaling & Behavior, 2024, 19(1): 2404807.
[7]

MITCHELL J W, MANDAVA N, WORLEY J F, et al. Brassins: a new family of plant hormones from rape pollen[J]. Nature, 1970, 225(5237): 1065 − 1066. doi:  10.1038/2251065a0
[8]

GROVE M D, SPENCER G F, ROHWEDDER W K, et al. Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen[J]. Nature, 1979, 281(5728): 216 − 217. doi:  10.1038/281216a0
[9]

CHAUDHURI A, HALDER K, ABDIN M Z, et al. Abiotic stress tolerance in plants: brassinosteroids navigate competently[J]. International Journal of Molecular Sciences, 2022, 23(23): 14577. doi:  10.3390/ijms232314577
[10] 杜巧丽, 刘均霞, 陈美晴, 等. 高粱BR信号转录因子BZR1基因家族的鉴定及激素应答分析[J]. 植物保护学报, 2022, 49(3): 848 − 856.
[11]

LUO S, ZHANG G, ZHANG Z, et al. Genome-wide identification and expression analysis of BZR gene family and associated responses to abiotic stresses in cucumber (Cucumis sativus L.)[J]. BMC Plant Biology, 2023, 23(1): 214. doi:  10.1186/s12870-023-04216-9
[12]

BAI M Y, ZHANG L Y, GAMPALA S S, et al. Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(34): 13839 − 13844.
[13] 李明, 颉嘉丽, 石铭福, 等. 外源2, 4-表油菜素内酯对碱性盐胁迫下马铃薯根系生长、生理特性及土壤酶活性的影响[J]. 江苏农业学报, 2024, 40(3): 394 − 402. doi:  10.3969/j.issn.1000-4440.2024.03.002
[14] 丁丹阳, 张璐翔, 朱智威, 等. 叶面喷施2, 4-表油菜素内酯对烟草抗旱性的影响[J]. 中国烟草科学, 2018, 39(4): 50 − 57.
[15]

LI J, CHORY J. A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction[J]. Cell, 1997, 90(5): 929 − 938. doi:  10.1016/S0092-8674(00)80357-8
[16]

YIN Y, VAFEADOS D, TAO Y, et al. A new class of transcription factors mediates brassinosteroid-regulated gene expression in Arabidopsis[J]. Cell, 2005, 120(2): 249 − 259. doi:  10.1016/j.cell.2004.11.044
[17]

BELKHADIR Y, JAILLAIS Y. The molecular circuitry of brassinosteroid signaling[J]. The New Phytologist, 2015, 206(2): 522 − 540. doi:  10.1111/nph.13269
[18]

CLOUSE S D. Brassinosteroid signal transduction: from receptor kinase activation to transcriptional networks regulating plant development[J]. The Plant Cell, 2011, 23(4): 1219 − 1230. doi:  10.1105/tpc.111.084475
[19]

KIM T W, GUAN S, BURLINGAME A L, et al. The CDG1 kinase mediates brassinosteroid signal transduction from BRI1 receptor kinase to BSU1 phosphatase and GSK3-like kinase BIN2[J]. Molecular Cell, 2011, 43(4): 561 − 571. doi:  10.1016/j.molcel.2011.05.037
[20]

WANG Z Y, NAKANO T, GENDRON J, et al. Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis[J]. Developmental Cell, 2002, 2(4): 505 − 513. doi:  10.1016/S1534-5807(02)00153-3
[21]

YIN Y, WANG Z Y, MORA-GARCIA S, et al. BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation[J]. Cell, 2002, 109(2): 181 − 191. doi:  10.1016/S0092-8674(02)00721-3
[22]

SUN Y, FAN X Y, CAO D M, et al. Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis[J]. Developmental Cell, 2010, 19(5): 765 − 777. doi:  10.1016/j.devcel.2010.10.010
[23]

HE J X, GENDRON J M, SUN Y, et al. BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses[J]. Science, 2005, 307(5715): 1634 − 1638. doi:  10.1126/science.1107580
[24]

XU M, ZHANG Y, YANG X, et al. Genome-wide analysis of the SWEET genes in Taraxacum kok-saghyz Rodin: an insight into two latex-abundant isoforms[J]. Plant Physiology and Biochemistry, 2023, 194: 440 − 448. doi:  10.1016/j.plaphy.2022.11.014
[25] 臧文蕊, 马明, 砗根, 等. 甜瓜BZR转录因子家族基因的全基因组鉴定及表达模式分析[J]. 生物技术通报, 2024, 40(7): 163 − 171.
[26] 江倩倩, 王雨婷, 惠竹梅. 葡萄BZR基因家族的鉴定及表达分析[J]. 植物生理学报, 2021, 57(6): 1218 − 1228.
[27] 尹魁林, 闫雪晴, 王玖瑞, 等. 枣EIN3/EIL基因家族鉴定及其在枣果实发育中的表达分析[J/OL]. 分子植物育种, 1−14(2024-08-08)[2025-02-08]. http://kns.cnki.net/kcms/detail/46.1068.S.20240808.1201.004.html.
[28] 薛正刚, 王树杰, 杨永乾, 等. 大麦GRF家族的基因组鉴定及生物信息学分析[J]. 分子植物育种, 2021, 19(6): 1750 − 1757.
[29] 陈旭, 沈春洋, 莫福磊, 等. 番茄BZR基因家族鉴定及非生物胁迫下表达模式分析[J]. 东北农业大学学报, 2021, 52(11): 9 − 17. doi:  10.3969/j.issn.1005-9369.2021.11.002
[30]

CHEN X, WU X, QIU S, et al. Genome-wide identification and expression profiling of the BZR transcription factor gene family in Nicotiana benthamiana[J]. International Journal of Molecular Sciences, 2021, 22(19): 10379. doi:  10.3390/ijms221910379
[31] 李春, 刘小俊, 蔡鹏, 等. 中国南瓜BZR基因家族的全基因组鉴定及生物信息学分析[J]. 分子植物育种, 2022, 20(19): 6324 − 6330.
[32] 郭新磊, 路普, 王园园, 等. 棉花BZR基因家族的全基因组鉴定及表达分析[J]. 棉花学报, 2017, 29(5): 415 − 427. doi:  10.11963/1002-7807.gxllf.20170830
[33]

LIU Z Q, YAN L, WU Z, et al. Cooperation of three WRKY-domain transcription factors WRKY18 WRKY40 and WRKY60 in repressing two ABA-responsive genes ABI4 and ABI5 in Arabidopsis[J]. Journal of Experimental Botany, 2012, 63(18): 6371 − 6392. doi:  10.1093/jxb/ers293
[34]

CAI R, ZHAO Y, WANG Y, et al. Overexpression of a maize WRKY58 gene enhances drought and salt tolerance in transgenic rice[J]. Plant Cell, Tissue and Organ Culture (PCTOC), 2014, 119(3): 565 − 577. doi:  10.1007/s11240-014-0556-7
[35]

FAHRENDORF T, DIXON R A. Stress responses in alfalfa (Medicago sativa L.). XVⅢ: Molecular cloning and expression of the elicitor-inducible cinnamic acid 4-hydroxylase cytochrome P450.[J]. Archives of biochemistry and biophysics, 1993, 305(2): 509 − 515. doi:  10.1006/abbi.1993.1454
[36]

REN X, CHEN Z, LIU Y, et al. ABO3, a WRKY transcription factor, mediates plant responses to abscisic acid and drought tolerance in Arabidopsis [J]. The Plant journal: for cell and molecular biology, 2010, 63(3): 417−429.