[1] 董璐. 热带季节性落叶与常绿森林的生态系统—大气交换通量比较[D]. 太原: 山西大学, 2020.
[2] 史晓亮, 吴梦月, 张娜. 中国典型陆地生态系统水分利用效率及其对气候的响应[J]. 农业工程学报, 2020, 36(9): 152 − 159.
[3] 胡中民, 于贵瑞, 王秋凤等. 生态系统水分利用效率研究进展[J]. 生态学报, 2009, 29(3): 1498 − 1507. doi:  10.3321/j.issn:1000-0933.2009.03.048
[4] 凌祯. 西双版纳橡胶林蒸散量时空变异特征及其预报模型研究[D]. 昆明: 云南师范大学, 2021.
[5]

FARQUHAR G D, SHARKEY T D. Stomatal conductance and photosynthesis [J]. Annual review of plant physiology, 1982, 33(1): 317 − 345. doi:  10.1146/annurev.pp.33.060182.001533
[6] 郑周涛, 张扬建. 1982—2018年青藏高原水分利用效率变化及归因分析[J/OL]. 植物生态学报. (2022-10-25)[2023-03-12]. http://kns.cnki.net/kcms/detail/11.3397.Q.20221024.1750.002.html.
[7]

ZHOU S, YU B F, HUANG Y F, WANG G Q. The effect of vapor pressure deficit on water use efficiency at the subdaily time scale [J]. Geophysical Research Letters, 2014, 41(14): 5005 − 5013. doi:  10.1002/2014GL060741
[8] 赵玮, 张一平, 宋清海, 等. 橡胶树蒸腾特征及其与环境因子的关系[J]. 生态学杂志, 2014, 33(7): 1803 − 1810. doi:  10.13292/j.1000-4890.20140422.034
[9]

ZHU X J, YU G R, WANG Q F, et al. Spatial variability of water use efficiency in China's terrestrial ecosystems [J]. Global and Planetary Change, 2015, 129: 37 − 44. doi:  10.1016/j.gloplacha.2015.03.003
[10]

TONG X, ZHANG J, MENG P, et al. Ecosystem water use efficiency in a warm-temperate mixed plantation in the North China [J]. Journal of Hydrology, 2014, 512: 221 − 228. doi:  10.1016/j.jhydrol.2014.02.042
[11]

YU G, SONG X, WANG Q, et al. Water‐use efficiency of forest ecosystems in eastern China and its relations to climatic variables [J]. New Phytologist, 2008, 177(4): 927 − 937. doi:  10.1111/j.1469-8137.2007.02316.x
[12]

ZHAO J, FENG H, XU T, et al. Physiological and environmental control on ecosystem water use efficiency in response to drought across the northern hemisphere [J]. Science of the Total Environment, 2021, 758: 143599. doi:  10.1016/j.scitotenv.2020.143599
[13]

MA J, JIA X, ZHA T, et al. Ecosystem water use efficiency in a young plantation in Northern China and its relationship to drought [J]. Agricultural and Forest Meteorology, 2019, 275: 1 − 10. doi:  10.1016/j.agrformet.2019.05.004
[14]

PAN S, CHEN G, REN W, et al. Responses of global terrestrial water use efficiency to climate change and rising atmospheric CO2 concentration in the twenty-first century [J]. International Journal of Digital Earth, 2018, 11(6): 558 − 582. doi:  10.1080/17538947.2017.1337818
[15] 祁栋灵, 兰国玉, 陈帮乾, 等. 橡胶林生态系统生态功能述评[J]. 生物学杂志, 2021, 38(1): 102 − 105. doi:  10.3969/j.issn.2095-1736.2021.01.102
[16]

BEER C, CIAIS P, REICHSTEIN M, et al. Temporal and among‐site variability of inherent water use efficiency at the ecosystem level[J]. Global Biogeochemical Cycles, 2009, 23(2). D0I:10.1029/2008GB003233.
[17]

NIE C, HUANG Y, ZHANG S, et al. Effects of soil water content on forest ecosystem water use efficiency through changes in transpiration/evapotranspiration ratio [J]. Agricultural and Forest Meteorology, 2021, 308: 108605.
[18]

GIAMBELLUCA T W, MUDD R G, LIU W, et al. Evapotranspiration of rubber (Hevea brasiliensis) cultivated at two plantation sites in Southeast Asia [J]. Water Resources Research, 2016, 52(2): 660 − 679. doi:  10.1002/2015WR017755
[19]

LIN Y, GRACE J, ZHAO W, et al. Water-use efficiency and its relationship with environmental and biological factors in a rubber plantation [J]. Journal of Hydrology, 2018, 563: 273 − 282. doi:  10.1016/j.jhydrol.2018.05.026
[20]

TAN Z H, ZHANG Y P, DENG X B, et al. Interannual and seasonal variability of water use efficiency in a tropical rainforest: Results from a 9 year eddy flux time series [J]. Journal of Geophysical Research:Atmospheres, 2015, 120(2): 464 − 479. doi:  10.1002/2014JD022535
[21]

LI H, WEI M, DONG L, et al. Leaf and ecosystem water use efficiencies differ in their global-scale patterns and drivers [J]. Agricultural and Forest Meteorology, 2022, 319: 108919. doi:  10.1016/j.agrformet.2022.108919
[22] 童俊儒, 安锋, 谢贵水. 基于CROPWAT模型的橡胶树需水量[J]. 热带生物学报, 2022, 13(1): 48 − 56.
[23]

LU H, LU F P, XU X L, et al. The control technique of rubber borers by pheromone traps in Hainan[C] Switzerland: Advanced Materials Research. Trans Tech Publications Ltd, 2014: 699 − 702.
[24] 吴志祥. 海南岛橡胶林生态系统碳平衡研究[D]. 海口: 海南大学, 2013.
[25]

AGUILOS M, STAHL C, BURBAN B, et al. Interannual and seasonal variations in ecosystem transpiration and water use efficiency in a tropical rainforest [J]. Forests, 2018, 10(1): 14. doi:  10.3390/f10010014
[26] 黄卓, 曹银轩, 徐喜娟, 等. 基于多源 GPP 和 ET 产品的秦岭生态系统水分利用效率研究[J]. 水土保持学报, 2022, 36(5): 181 − 194.
[27] 王大为, 赵成章, 方锋, 等. 石羊河流域水分利用效率特征及其对饱和水汽压差的响应[J/OL]. 生态学报, 2023(8): 1−13[2023−03−12]. http://kns.cnki.net/kcms/detail/11.2031.Q.20220826.1622.058.html.
[28]

MONTEITH J L. The state and movement of water in living organisms[C]//19th Symposia of the Society for Experimental Biology. London: Cambridge University Press, 1965: 205 − 234.
[29]

THOM A S. Momentum, mass and heat exchange of vegetation [J]. Quarterly Journal of the Royal Meteorological Society, 1972, 98(415): 124 − 134. doi:  10.1002/qj.49709841510
[30]

KABAT P, DOLMAN A J, ELBERS J A. Evaporation, sensible heat and canopy conductance of fallow savannah and patterned woodland in the Sahel [J]. Journal of Hydrology, 1997, 188: 494 − 515.
[31]

YUAN W, LIU S, ZHOU G, et al. Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes [J]. Agricultural and Forest Meteorology, 2007, 143(3/4): 189 − 207.
[32]

RAICH J W, RASTETTER E B, MELILLO J M, et al. Potential net primary productivity in South America: application of a global model [J]. Ecological Applications, 1991, 1(4): 399 − 429. doi:  10.2307/1941899
[33]

WANG L, LI M, WANG J, et al. An analytical reductionist framework to separate the effects of climate change and human activities on variation in water use efficiency [J]. Science of the Total Environment, 2020, 727: 138306. doi:  10.1016/j.scitotenv.2020.138306
[34]

WANG Y, LI R, HU J, et al. Daily estimation of gross primary production under all sky using a light use efficiency model coupled with satellite passive microwave measurements [J]. Remote Sensing of Environment, 2021, 267: 112721. doi:  10.1016/j.rse.2021.112721
[35]

WANG P, LI D, LIAO W, et al. Contrasting evaporative responses of ecosystems to heatwaves traced to the opposing roles of vapor pressure deficit and surface resistance [J]. Water Resources Research, 2019, 55(6): 4550 − 4563. doi:  10.1029/2019WR024771
[36]

LIAO W, RIGDEN A J, LI D. Attribution of local temperature response to deforestation [J]. Journal of Geophysical Research: Biogeosciences, 2018, 123(5): 1572 − 1587. doi:  10.1029/2018JG004401
[37] 张良侠, 胡中民, 樊江文, 等. 区域尺度生态系统水分利用效率的时空变异特征研究进展[J]. 地球科学进展, 2014, 29(6): 691 − 699. doi:  10.11867/j.issn.1001-8166.2014.06.0691
[38] 黄健强, 邓永红, 曾小平, 等. 南亚热带针阔叶混交林生态系统水分利用效率[J]. 生态学杂志, 2020, 39(8): 2538 − 2545. doi:  10.13292/j.1000-4890.202008.015
[39] 杜晓铮, 赵祥, 王昊宇, 等. 陆地生态系统水分利用效率对气候变化的响应研究进展[J]. 生态学报, 2018, 38(23): 8296 − 8305.
[40]

LI S, KANG S, ZHANG L, et al. Ecosystem water use efficiency for a sparse vineyard in arid northwest China [J]. Agricultural Water Management, 2015, 148: 24 − 33. doi:  10.1016/j.agwat.2014.08.011
[41] 邓慧平, 丹利, 王倩, 等. 气候与植被覆盖变化对中国西南亚高山区流域碳水循环的影响模拟[J]. 气候与环境研究, 2020, 25(1): 19 − 31.
[42] 宋春林, 孙向阳, 王根绪. 森林生态系统碳水关系及其影响因子研究进展[J]. 应用生态学报, 2015, 26(9): 2891 − 2902. doi:  10.13287/j.1001-9332.20150630.020
[43]

WANG M, CHEN Y, WU X, et al. Forest‐type‐dependent water use efficiency trends across the Northern Hemisphere [J]. Geophysical Research Letters, 2018, 45(16): 8283 − 8293. doi:  10.1029/2018GL079093
[44] 周洁. 北京大兴杨树人工林生态系统水分利用效率研究[D]. 北京: 北京林业大学, 2013.