[1] |
曹升, 陈江枫, 黄富宇, 等. 广西木薯产业现状分析及其发展建议[J]. 南方农业学报, 2021, 52(06): 1468 − 1476. doi: 10.3969/j.issn.2095-1191.2021.06.005 |
[2] |
MCMAHON J, SAYRE R, ZIDENGA T. Cyanogenesis in cassava and its molecular manipulation for crop improvement[J]. Journal of Experimental Botany, 2022, 73(7): 1853 − 1867. doi: 10.1093/jxb/erab545 |
[3] |
罗春芳, 杨龙, 欧珍贵, 等. 木薯食品加工的现状及前景展望[J]. 江西农业学报, 2019, 31(3): 107 − 112. |
[4] |
王莉, 邓婷鹤. 2014年我国热作产品进出口贸易情况分析[J]. 中国热带农业, 2015(2): 4 − 7. doi: 10.3969/j.issn.1673-0658.2015.02.001 |
[5] |
谭砚文, 李丛希, 曾华盛. 中国木薯生产和贸易发展分析[J]. 世界农业, 2018(10): 163 − 168. |
[6] |
云雪雪, 陈雨生. 国际盐碱地开发动态及其对我国的启示[J]. 国土与自然资源研究, 2020(1): 84 − 87. |
[7] |
YANG Y, GUO Y. Elucidating the molecular mechanisms mediating plant salt-stress responses[J]. The New Phytologist, 2018, 217(2): 523 − 539. doi: 10.1111/nph.14920 |
[8] |
庄盈婷. 木薯叶片和叶绿体应答盐胁迫的比较蛋白质组学研究[D]. 海口: 海南大学, 2014. |
[9] |
FAN X W, SUN J L, CAI Z, et al. MeSWEET15a/b genes play a role in the resistance of cassava (Manihot esculenta Crantz) to water and salt stress by modulating sugar distribution[J]. Plant Physiology and Biochemistry: PPB, 2023, 194: 394 − 405. doi: 10.1016/j.plaphy.2022.11.027 |
[10] |
MA X W, MA Q X, MA M Q, et al. Cassava MeRS40 is required for the regulation of plant salt tolerance[J]. Journal of Integrative Agriculture, 2023, 22(5): 1396 − 1411. doi: 10.1016/j.jia.2023.04.003 |
[11] |
吕瑞. 木薯耐盐种质筛选及盐种质SC8盐胁迫转录组分析[D]. 海口: 海南大学, 2019. |
[12] |
QIU Z, GUO J, ZHU A, et al. Exogenous jasmonic acid can enhance tolerance of wheat seedlings to salt stress[J]. Ecotoxicology and Environmental Safety, 2014, 104: 202 − 208. doi: 10.1016/j.ecoenv.2014.03.014 |
[13] |
MICCONO M L A, YANG H W, DEMOTT L, et al. Review: losing JAZ4 for growth and defense[J]. Plant Science: an International Journal of Experimental Plant Biology, 2023, 335: 111816. |
[14] |
WAN S, XIN X F. Regulation and integration of plant jasmonate signaling: a comparative view of monocot and dicot[J]. Journal of Genetics and Genomics = Yi Chuan Xue Bao, 2022, 49(8): 704 − 714. doi: 10.1016/j.jgg.2022.04.002 |
[15] |
LIU F, SUN T, WANG L, et al. Plant jasmonate ZIM domain genes: shedding light on structure and expression patterns of JAZ gene family in sugarcane[J]. BMC Genomics, 2017, 18(1): 771. doi: 10.1186/s12864-017-4142-3 |
[16] |
YE L, CAO L, ZHAO X, et al. Investigation of the JASMONATE ZIM-DOMAIN gene family reveals the canonical JA-signaling pathway in pineapple[J]. Biology, 2022, 11(3): 445. doi: 10.3390/biology11030445 |
[17] |
XU D B, MA Y N, QIN T F, et al. Transcriptome-wide identification and characterization of the JAZ gene family in Mentha canadensis L[J]. International Journal of Molecular Sciences, 2021, 22(16): 8859. doi: 10.3390/ijms22168859 |
[18] |
ZHU D, CAI H, LUO X, et al. Over-expression of a novel JAZ family gene from Glycine soja, increases salt and alkali stress tolerance[J]. Biochemical and Biophysical Research Communications, 2012, 426(2): 273 − 279. doi: 10.1016/j.bbrc.2012.08.086 |
[19] |
ZHENG L, WAN Q, WANG H, et al. Genome-wide identification and expression of TIFY family in cassava (Manihot esculenta Crantz)[J]. Frontiers in Plant Science, 2022, 13: 1017840. doi: 10.3389/fpls.2022.1017840 |
[20] |
ZHENG L, GAO S, BAI Y, et al. NF-YC15 transcription factor activates ethylene biosynthesis and improves cassava disease resistance[J]. Plant Biotechnology Journal, 2024, 22(9): 2424 − 2434. doi: 10.1111/pbi.14355 |
[21] |
TAMURA K, STECHER G, KUMAR S. MEGA11: molecular evolutionary genetics analysis version 11[J]. Molecular Biology and Evolution, 2021, 38(7): 3022 − 3027. doi: 10.1093/molbev/msab120 |
[22] |
MUSHTAQ S, TAYYEB A, FIRDAUS-E-BAREEN. A comparison of total RNA extraction methods for RT-PCR based differential expression of genes from Trichoderma atrobrunneum[J]. Journal of Microbiological Methods, 2022, 200: 106535. doi: 10.1016/j.mimet.2022.106535 |
[23] |
ZENG H, XIE Y, LIU G, et al. Agrobacterium-mediated gene transient overexpression and Tobacco rattle virus (TRV)-based gene silencing in cassava[J]. International Journal of Molecular Sciences, 2019, 20(16): 3976. doi: 10.3390/ijms20163976 |
[24] |
JIN G, QI J, ZU H, et al. Jasmonate-mediated gibberellin catabolism constrains growth during herbivore attack in rice[J]. The Plant Cell, 2023, 35(10): 3828 − 3844. doi: 10.1093/plcell/koad191 |
[25] |
VALENZUELA C E, ACEVEDO-ACEVEDO O, MIRANDA G S, et al. Salt stress response triggers activation of the jasmonate signaling pathway leading to inhibition of cell elongation in Arabidopsis primary root[J]. Journal of Experimental Botany, 2016, 67(14): 4209 − 4220. doi: 10.1093/jxb/erw202 |
[26] |
SHETEIWY M S, SHAO H, QI W, et al. Seed priming and foliar application with jasmonic acid enhance salinity stress tolerance of soybean (Glycine max L.) seedlings[J]. Journal of the Science of Food and Agriculture, 2021, 101(5): 2027 − 2041. doi: 10.1002/jsfa.10822 |
[27] |
ALIAKBARI M, TAHMASEBI S, SISAKHT J N. Jasmonic acid improves barley photosynthetic efficiency through a possible regulatory module, MYC2-RcaA, under combined drought and salinity stress[J]. Photosynthesis Research, 2024, 159(1): 69 − 78. doi: 10.1007/s11120-023-01074-2 |
[28] |
HOU X, SINGH S K, WERKMAN J R, et al. Partial desensitization of MYC2 transcription factor alters the interaction with jasmonate signaling components and affects specialized metabolism[J]. International Journal of Biological Macromolecules, 2023, 252: 126472. doi: 10.1016/j.ijbiomac.2023.126472 |
[29] |
YUAN H, LIU B, ZHANG G, et al. Genome-wide identification and expression analysis of the PsTPS gene family in Pisum sativum[J]. Horticulturae, 2024, 10(10): 1104. doi: 10.3390/horticulturae10101104 |
[30] |
CUI J, JIANG X, LI Y, et al. Genome-wide identification, phylogenetic, and expression analysis of jasmonate ZIM-domain gene family in Medicago sativa L[J]. International Journal of Molecular Sciences, 2024, 25(19): 10589. doi: 10.3390/ijms251910589 |
[31] |
DU Q L, FANG Y P, JIANG J M, et al. Genome-wide identification and characterization of the JAZ gene family and its expression patterns under various abiotic stresses in Sorghum bicolor[J]. Journal of Integrative Agriculture, 2022, 21(12): 3540 − 3555. doi: 10.1016/j.jia.2022.08.104 |
[32] |
ZHAO G, SONG Y, WANG Q, et al. Gossypium hirsutum salt tolerance is enhanced by overexpression of G. arboreum JAZ1[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 157. doi: 10.3389/fbioe.2020.00157 |
[33] |
MA J, LI C, SUN L, et al. The SlWRKY57-SlVQ21/SlVQ16 module regulates salt stress in tomato[J]. Journal of Integrative Plant Biology, 2023, 65(11): 2437 − 2455. doi: 10.1111/jipb.13562 |
[34] |
WU H, YE H, YAO R, et al. OsJAZ9 acts as a transcriptional regulator in jasmonate signaling and modulates salt stress tolerance in rice [J]. Plant Science: an International Journal of Experimental Plant Biology, 2015, 232: 1−12. |
[35] |
ZHANG W, YUAN S, LIU N, et al. Glutamine synthetase and glutamate synthase family perform diverse physiological functions in exogenous hormones and abiotic stress responses in Pyrus betulifolia bunge (P. be)[J]. Plants, 2024, 13(19): 2759. doi: 10.3390/plants13192759 |
[36] |
HOSHIDA H, TANAKA Y, HIBINO T, et al. Enhanced tolerance to salt stress in transgenic rice that overexpresses chloroplast glutamine synthetase[J]. Plant Molecular Biology, 2000, 43(1): 103 − 111. doi: 10.1023/A:1006408712416 |
[37] |
CAI H, ZHOU Y, XIAO J, et al. Overexpressed glutamine synthetase gene modifies nitrogen metabolism and abiotic stress responses in rice[J]. Plant Cell Reports, 2009, 28(3): 527 − 537. doi: 10.1007/s00299-008-0665-z |
[38] |
FORTUNATO S, NIGRO D, LASORELLA C, et al. The role of glutamine synthetase (GS) and glutamate synthase (GOGAT) in the improvement of nitrogen use efficiency in cereals[J]. Biomolecules, 2023, 13(12): 1771. doi: 10.3390/biom13121771 |