| [1] | 赵伟, 王雷, 刘梅, 等. 副溶血弧菌对凡纳滨对虾肝胰腺抗氧化酶活性和基因表达的影响[J]. 中国水产科学, 2017, 24(6): 1261 − 1270. doi: 10.3724/SP.J.1118.2017.16221 |
| [2] | PARK M Y, KIM H J, CHOI S T, et al. Pathogenic factors of Vibrio spp. isolated from seawater of gwangan beach in Busan[J]. Fisheries and Aquatic Sciences, 2002, 5(3): 178 − 182. doi: 10.5657/fas.2002.5.3.178 |
| [3] | SAKUMA M, NISHIKAWA S, INABA S, et al. Structure of the periplasmic domain of SflA involved in spatial regulation of the flagellar biogenesis of Vibrio reveals a TPR/SLR-like fold[J]. The Journal of Biochemistry, 2019, 166(2): 197 − 204. doi: 10.1093/jb/mvz027 |
| [4] | ONO H, TAKASHIMA A, HIRATA H, et al. The MinD homolog FlhG regulates the synthesis of the single polar flagellum of Vibrio alginolyticus[J]. Molecular Microbiology, 2015, 98(1): 130 − 141. doi: 10.1111/mmi.13109 |
| [5] | HORMANSDORFER S, WENTGES H, NEUGEBAUR-BUCHLER K, et al. Isolation of Vibrio alginolyticus from seawater aquaria[J]. International Journal of Hygiene and Environmental Health, 2000, 203(2): 169 − 175. doi: 10.1078/S1438-4639(04)70024-3 |
| [6] | XIE J S, BU L F, JIN S, et al. Outbreak of vibriosis caused by Vibrio harveyi and Vibrio alginolyticus in farmed seahorse Hippocampus kuda in China[J]. Aquaculture, 2020, 523: 735168. doi: 10.1016/j.aquaculture.2020.735168 |
| [7] | LIANG H Y, XIA L Q, WU Z H, et al. Expression, purification and antibody preparation of flagellin FlaA from Vibrio alginolyticus strain HY9901[J]. Letters in Applied Microbiology, 2010, 50(2): 181 − 186. doi: 10.1111/j.1472-765X.2009.02768.x |
| [8] | 权太淑, 李薇, 杨喜玲. 自腹泻患者中分离溶藻性弧菌及其病原性的探讨[J]. 中国公共卫生, 1985, 4(5): 15 − 18. |
| [9] | WANG Q, LIU Q, MA Y, et al. LuxO controls extracellular protease, haemolytic activities and siderophore production in fish pathogen Vibrio alginolyticus[J]. Journal of Applied Microbiology, 2007, 103(5): 1525 − 1534. doi: 10.1111/j.1365-2672.2007.03380.x |
| [10] | HØIBY N, BJARNSHOLT T, GIVSKOV M, et al. Antibiotic resistance of bacterial biofilms[J]. International Journal of Antimicrobial Agents, 2010, 35(4): 322 − 332. doi: 10.1016/j.ijantimicag.2009.12.011 |
| [11] | BATTIN T J, KAPLAN L A, DENIS NEWBOLD J, et al. Contributions of microbial biofilms to ecosystem processes in stream mesocosms[J]. Nature, 2003, 426(6965): 439 − 442. doi: 10.1038/nature02152 |
| [12] | JHELUM H, SORI H, SEHGAL D. A novel extracellular vesicle-associated endodeoxyribonuclease helps Streptococcus pneumoniae evade neutrophil extracellular traps and is required for full virulence[J]. Scientific Reports, 2018, 8(1): 7985. doi: 10.1038/s41598-018-25865-z |
| [13] | ZHAO Y X, XIANG X, LIU X P, et al. The biochemical characterization of a TatD nuclease from Thermus thermophilus[J]. Protein Expression and Purification, 2024, 223: 106557. doi: 10.1016/j.pep.2024.106557 |
| [14] | YU T, SUN Z, CAO X Y, et al. Identification and characterization of TatD DNase in planarian Dugesia japonica and its antibiofilm effect[J]. Environmental Research, 2024, 251: 118534. doi: 10.1016/j.envres.2024.118534 |
| [15] | WEXLER M, SARGENT F, JACK R L, et al. TatD is a cytoplasmic protein with DNase activity: no requirement for TatD family proteins in sec-independent protein export[J]. Journal of Biological Chemistry, 2000, 225(22): 16717 − 16722. doi: 10.1074/jbc.M000800200 |
| [16] | CHANG Z G, JIANG N, ZHANG Y Y, et al. The TatD-like DNase of Plasmodium is a virulence factor and a potential malaria vaccine candidate[J]. Nature Communications, 2016, 7: 11537. doi: 10.1038/ncomms11537 |
| [17] | NAG S, BANERJEE C, GOYAL M, et al. Plasmodium falciparum Alba6 exhibits DNase activity and participates in stress response[J]. iScience, 2024, 27(4): 109467. doi: 10.1016/j.isci.2024.109467 |
| [18] | CHEN L L, SHEN D Y, SUN N N, et al. Phytophthora sojae TatD nuclease positively regulates sporulation and negatively regulates pathogenesis[J]. Molecular Plant-Microbe Interactions®, 2014, 27(10): 1070 − 1080. doi: 10.1094/MPMI-05-14-0153-R |
| [19] | LOVETT S T. The DNA exonucleases of Escherichia coli[J]. EcoSal Plus, 2011, 4(2): 19 − 25. doi: 10.1128/ecosalplus.4.4.7 |
| [20] | LEE K Y, CHEON S H, KIM D G, et al. A structural study of TatD from Staphylococcus aureus elucidates a putative DNA-binding mode of a Mg2+-dependent nuclease[J]. IUCrJ, 2020, 7(3): 509 − 521. doi: 10.1107/S2052252520003917 |
| [21] | MATOS C F R O, DI COLA A, ROBINSON C. TatD is a central component of a tat translocon-initiated quality control system for exported FeS proteins in Escherichia coli[J]. Embo Reports, 2009, 10(5): 474 − 479. doi: 10.1038/embor.2009.34 |
| [22] | LV P C, LI H Q, XUE J Y, et al. Synthesis and biological evaluation of novel luteolin derivatives as antibacterial agents[J]. European Journal of Medicinal Chemistry, 2009, 44(2): 908 − 914. doi: 10.1016/j.ejmech.2008.01.013 |
| [23] | LI J P, CHEN Y X, QI J, et al. Characterization of EPS subfractions from a mixed culture predominated by partial-denitrification functional bacteria[J]. Water Research X, 2024, 24: 100250. doi: 10.1016/j.wroa.2024.100250 |
| [24] | WANG Q, LIU Q, MA Y, et al. LuxO controls extracellular protease, haemolytic activities and siderophore production in fish pathogen Vibrio alginolyticus[J]. Journal of Applied Microbiology, 2007, 103(5): 1525-1534. doi:10.1111/j.1365-2672.2007.03380.x (查阅网上资料,本条文献与第9条文献重复,请确认) |
| [25] | BOSEDASGUPTA S, DAS B B, SENGUPTA S, et al. The caspase-independent algorithm of programmed cell death in Leishmania induced by baicalein: the role of LdEndoG, LdFEN-1 and LdTatD as a DNA 'degradesome'[J]. Cell Death & Differentiation, 2008, 15(10): 1629 − 1640. doi: 10.1038/cdd.2008.85 |
| [26] | GANNAVARAM S, DEBRABANT A. Involvement of TatD nuclease during programmed cell death in the protozoan parasite Trypanosoma brucei[J]. Molecular Microbiology, 2012, 83(5): 926 − 935. doi: 10.1111/j.1365-2958.2012.07978.x |