[1] 何应对. 香蕉幼苗根系对缺钾胁迫的响应及分子机制研究 [D]. 武汉: 华中农业大学, 2021.
[2] 曾鸿运, 吴元立, 黄秉智. 中国香蕉育种研究进展[J]. 果树学报, 2023, 40(11): 2446 − 2465.
[3]

HUANG P H, CHENG Y T, LU W C, et al. Changes in nutrient content and physicochemical properties of Cavendish bananas var. Pei chiao during ripening[J]. Horticulturae, 2024, 10(4): 384. doi:  10.3390/horticulturae10040384
[4]

ANYASI T A, JIDEANI A I O, MCHAU G A. Morphological, physicochemical, and antioxidant profile of noncommercial banana cultivars[J]. Food Science & Nutrition, 2015, 3(3): 221 − 232.
[5] 王芳, 谢江辉. 我国香蕉产业“十三五” 回顾与“十四五” 展望 [J]. 中国热带农业, 2022(3): 15−22.
[6] 许林兵, 张锡炎, 甘东泉, 等. ‘海贡蕉’引种试种研究[J]. 热带农业科学, 2013, 33(8): 24 − 28. doi:  10.3969/j.issn.1009-2196.2013.08.007
[7] 黄思豪, 王丽霞, 刘永霞, 等. 基于机器学习算法预测香蕉产量[J]. 热带生物学报, 2025, 16(1): 21 − 30.
[8] 刘雪红, 吴坤林, 陈国华, 等. “金手指” 香蕉的组织培养和快速繁殖[J]. 中国南方果树, 2006, 35(1): 34 − 35. doi:  10.3969/j.issn.1007-1431.2006.01.017
[9] 唐文, 李凯, 李羽佳, 等. 优质绿色皇帝蕉栽培管理技术[J]. 分子植物育种, 2018, 16(8): 2730 − 2735.
[10] 陈海斌. 香蕉氮磷钾钙镁硫胁迫下的营养特性与营养诊断研究 [D]. 广州: 华南农业大学, 2017.
[11] 王衍安. 苹果树锌运转分配及缺锌对其生理特性影响的研究 [D]. 泰安: 山东农业大学, 2007.
[12]

CHEN L H, XU M, CHENG Z, et al. Effects of nitrogen deficiency on the photosynthesis, chlorophyⅡ a fluorescence, antioxidant system, and sulfur compounds in Oryza sativa[J]. International Journal of Molecular Sciences, 2024, 25(19): 10409. doi:  10.3390/ijms251910409
[13]

SHENG Y J, DING Y W, FU Y Y, et al. The research development of the response mechanisms to magnesium stresses in plants[J]. Botanical Research, 2015, 4(5): 97 − 106. doi:  10.12677/BR.2015.45012
[14]

ZHOU Z, STRUIK P C, GU J, et al. Enhancing leaf photosynthesis from altered chlorophyⅡ content requires optimal partitioning of nitrogen[J]. Crop and Environment, 2023, 2(1): 24 − 36. doi:  10.1016/j.crope.2023.02.001
[15] 侯扶江, 郑文菊. 紫外线-B辐射与3种植物幼苗的光合作用: 光合作用对紫外线-B敏感性的比较[J]. 西北植物学报, 2000, 20(2): 218 − 223. doi:  10.3321/j.issn:1000-4025.2000.02.011
[16] M. HAVAUX, R. LANNOYE, 周宽余. 用叶绿素荧光实验快速测定硬粒小麦栽培品种的抗旱性[J]. 麦类作物学报, 1987, 7(2): 32 − 33.
[17]

LICHTENTHALER H K, RINDERLE U. The role of chlorophyⅡ fluorescence in the detection of stress conditions in plants[J]. C R C Critical Reviews in Analytical Chemistry, 1988, 19(s1): S29 − S85.
[18] 周春艳. 植物叶片叶绿素荧光动力学成像探测方法与应用研究 [D]. 西安: 西安理工大学, 2019.
[19]

HE H, WU X, KHAN S, et al. Phenotypic variations in banana cultivars in the utilization and tolerance to different magnesium levels[J]. Horticulturae, 2023, 9(9): 1017. doi:  10.3390/horticulturae9091017
[20] 黄筱涵, 宋思情, 龙丽君, 等. 铅锌胁迫对凹叶厚朴幼苗生理特性的影响[J]. 中南林业科技大学学报, 2023, 43(7): 82 − 90.
[21] 安晓静, 刘尚年, 王海英, 等. 中微量营养元素在药用植物栽培中的应用进展[J]. 中药材, 2024, 47(4): 1045 − 1052.
[22] 刘桂兰. 微量元素对植物生长发育的作用[J]. 现代农村科技, 2009(3): 55. doi:  10.3969/j.issn.1674-5329.2009.03.056
[23] 林姜岑, 王子豪, 王子琨, 等. 钙、镁缺乏对香蕉幼苗生长及养分吸收的影响[J]. 中国果树, 2023(5): 70 − 75.
[24]

WINTER K, SCHRAMM M J. Analysis of stomatal and nonstomatal components in the environmental control of CO2 exchange in leaves of Welwitschia mirabilis[J]. Plant Physiology, 1986, 82(1): 173 − 178. doi:  10.1104/pp.82.1.173
[25]

THOMAS D S, TURNER D W. Banana (Musa sp.) leaf gas exchange and chlorophyⅡ fluorescence in response to soil drought, shading and Lamina folding[J]. Scientia Horticulturae, 2001, 90(1/2): 93 − 108.
[26]

FARQUHAR G D, SHARKEY T D. Stomatal conductance and photosynthesis[J]. Annual Review of Plant Physiology, 1982, 33: 317 − 345. doi:  10.1146/annurev.pp.33.060182.001533
[27] 高吉权. 铅锌胁迫对毛红椿叶片气体交换和叶绿素荧光的影响 [D]. 长沙: 中南林业科技大学, 2019.
[28] 陈晓亚, 汤章城. 植物生理与分子生物学 [M]. 3版. 北京: 高等教育出版社, 2007.
[29] 葛晋金, 孙晓娜, 张丽平, 等. 缺钾对香蕉光合特性和矿质元素含量的影响[J]. 江苏农业科学, 2022, 50(4): 105 − 109.
[30] 李紫琴. 不同水分处理下棉花叶片光合参数与叶绿素荧光的高光谱监测研究 [D]. 阿拉尔: 塔里木大学, 2023.
[31]

KALAJI H M, SCHANSKER G, LADLE R J, et al. Frequently asked questions about in vivo chlorophyⅡ fluorescence: practical issues[J]. Photosynthesis Research, 2014, 122(2): 121 − 158. doi:  10.1007/s11120-014-0024-6
[32]

GUO Y, TAN J. Recent advances in the application of chlorophyll a fluorescence from photosystem Ⅱ[J]. Photochemistry and Photobiology, 2015, 91(1): 1 − 14. doi:  10.1111/php.12362
[33]

PORCAR-CASTELL A, MALENOVSKý Z, MAGNEY T, et al. ChlorophyⅡ a fluorescence illuminates a path connecting plant molecular biology to Earth-system science[J]. Nature Plants, 2021, 7(8): 998 − 1009. doi:  10.1038/s41477-021-00980-4
[34]

BOLHÀR-NORDENKAMPF H R, OQUIST G. Chlorophyll fluorescenceas a tool in photosynthesis research[M]. Photosynthesis andProduction in a Changing Environment. Dordrecht: SpringerNetherlands. 1993: 193−206.
[35] 夏倩. 基于叶绿素荧光的水稻干旱检测技术研究 [D]. 无锡: 江南大学, 2023.
[36] 刘韵诗. 缺素与黄龙病对柑橘叶片叶绿素荧光特性和初生代谢的影响 [D]. 福州: 福建农林大学, 2023.
[37]

FRIEDL C, FEDOROV D G, RENGER T. Towards a quantitative description of excitonic couplings in photosynthetic pigment-protein complexes: quantum chemistry driven multiscale approaches[J]. Physical Chemistry Chemical Physics, 2022, 24(8): 5014 − 5038. doi:  10.1039/D1CP03566E
[38]

ARIEF M A A, KIM H, KURNIAWAN H, et al. Chlorophyll fluorescence imaging for early detection of drought and heat stress in strawberry plants[J]. Plants, 2023, 12(6): 1387. doi:  10.3390/plants12061387
[39] 董贞芬. 低温胁迫下番茄幼苗叶绿素荧光成像的分析及研究 [D]. 沈阳: 沈阳农业大学, 2019.