[1] |
何应对. 香蕉幼苗根系对缺钾胁迫的响应及分子机制研究 [D]. 武汉: 华中农业大学, 2021. |
[2] |
曾鸿运, 吴元立, 黄秉智. 中国香蕉育种研究进展[J]. 果树学报, 2023, 40(11): 2446 − 2465. |
[3] |
HUANG P H, CHENG Y T, LU W C, et al. Changes in nutrient content and physicochemical properties of Cavendish bananas var. Pei chiao during ripening[J]. Horticulturae, 2024, 10(4): 384. doi: 10.3390/horticulturae10040384 |
[4] |
ANYASI T A, JIDEANI A I O, MCHAU G A. Morphological, physicochemical, and antioxidant profile of noncommercial banana cultivars[J]. Food Science & Nutrition, 2015, 3(3): 221 − 232. |
[5] |
王芳, 谢江辉. 我国香蕉产业“十三五” 回顾与“十四五” 展望 [J]. 中国热带农业, 2022(3): 15−22. |
[6] |
许林兵, 张锡炎, 甘东泉, 等. ‘海贡蕉’引种试种研究[J]. 热带农业科学, 2013, 33(8): 24 − 28. doi: 10.3969/j.issn.1009-2196.2013.08.007 |
[7] |
黄思豪, 王丽霞, 刘永霞, 等. 基于机器学习算法预测香蕉产量[J]. 热带生物学报, 2025, 16(1): 21 − 30. |
[8] |
刘雪红, 吴坤林, 陈国华, 等. “金手指” 香蕉的组织培养和快速繁殖[J]. 中国南方果树, 2006, 35(1): 34 − 35. doi: 10.3969/j.issn.1007-1431.2006.01.017 |
[9] |
唐文, 李凯, 李羽佳, 等. 优质绿色皇帝蕉栽培管理技术[J]. 分子植物育种, 2018, 16(8): 2730 − 2735. |
[10] |
陈海斌. 香蕉氮磷钾钙镁硫胁迫下的营养特性与营养诊断研究 [D]. 广州: 华南农业大学, 2017. |
[11] |
王衍安. 苹果树锌运转分配及缺锌对其生理特性影响的研究 [D]. 泰安: 山东农业大学, 2007. |
[12] |
CHEN L H, XU M, CHENG Z, et al. Effects of nitrogen deficiency on the photosynthesis, chlorophyⅡ a fluorescence, antioxidant system, and sulfur compounds in Oryza sativa[J]. International Journal of Molecular Sciences, 2024, 25(19): 10409. doi: 10.3390/ijms251910409 |
[13] |
SHENG Y J, DING Y W, FU Y Y, et al. The research development of the response mechanisms to magnesium stresses in plants[J]. Botanical Research, 2015, 4(5): 97 − 106. doi: 10.12677/BR.2015.45012 |
[14] |
ZHOU Z, STRUIK P C, GU J, et al. Enhancing leaf photosynthesis from altered chlorophyⅡ content requires optimal partitioning of nitrogen[J]. Crop and Environment, 2023, 2(1): 24 − 36. doi: 10.1016/j.crope.2023.02.001 |
[15] |
侯扶江, 郑文菊. 紫外线-B辐射与3种植物幼苗的光合作用: 光合作用对紫外线-B敏感性的比较[J]. 西北植物学报, 2000, 20(2): 218 − 223. doi: 10.3321/j.issn:1000-4025.2000.02.011 |
[16] |
M. HAVAUX, R. LANNOYE, 周宽余. 用叶绿素荧光实验快速测定硬粒小麦栽培品种的抗旱性[J]. 麦类作物学报, 1987, 7(2): 32 − 33. |
[17] |
LICHTENTHALER H K, RINDERLE U. The role of chlorophyⅡ fluorescence in the detection of stress conditions in plants[J]. C R C Critical Reviews in Analytical Chemistry, 1988, 19(s1): S29 − S85. |
[18] |
周春艳. 植物叶片叶绿素荧光动力学成像探测方法与应用研究 [D]. 西安: 西安理工大学, 2019. |
[19] |
HE H, WU X, KHAN S, et al. Phenotypic variations in banana cultivars in the utilization and tolerance to different magnesium levels[J]. Horticulturae, 2023, 9(9): 1017. doi: 10.3390/horticulturae9091017 |
[20] |
黄筱涵, 宋思情, 龙丽君, 等. 铅锌胁迫对凹叶厚朴幼苗生理特性的影响[J]. 中南林业科技大学学报, 2023, 43(7): 82 − 90. |
[21] |
安晓静, 刘尚年, 王海英, 等. 中微量营养元素在药用植物栽培中的应用进展[J]. 中药材, 2024, 47(4): 1045 − 1052. |
[22] |
刘桂兰. 微量元素对植物生长发育的作用[J]. 现代农村科技, 2009(3): 55. doi: 10.3969/j.issn.1674-5329.2009.03.056 |
[23] |
林姜岑, 王子豪, 王子琨, 等. 钙、镁缺乏对香蕉幼苗生长及养分吸收的影响[J]. 中国果树, 2023(5): 70 − 75. |
[24] |
WINTER K, SCHRAMM M J. Analysis of stomatal and nonstomatal components in the environmental control of CO2 exchange in leaves of Welwitschia mirabilis[J]. Plant Physiology, 1986, 82(1): 173 − 178. doi: 10.1104/pp.82.1.173 |
[25] |
THOMAS D S, TURNER D W. Banana (Musa sp.) leaf gas exchange and chlorophyⅡ fluorescence in response to soil drought, shading and Lamina folding[J]. Scientia Horticulturae, 2001, 90(1/2): 93 − 108. |
[26] |
FARQUHAR G D, SHARKEY T D. Stomatal conductance and photosynthesis[J]. Annual Review of Plant Physiology, 1982, 33: 317 − 345. doi: 10.1146/annurev.pp.33.060182.001533 |
[27] |
高吉权. 铅锌胁迫对毛红椿叶片气体交换和叶绿素荧光的影响 [D]. 长沙: 中南林业科技大学, 2019. |
[28] |
陈晓亚, 汤章城. 植物生理与分子生物学 [M]. 3版. 北京: 高等教育出版社, 2007. |
[29] |
葛晋金, 孙晓娜, 张丽平, 等. 缺钾对香蕉光合特性和矿质元素含量的影响[J]. 江苏农业科学, 2022, 50(4): 105 − 109. |
[30] |
李紫琴. 不同水分处理下棉花叶片光合参数与叶绿素荧光的高光谱监测研究 [D]. 阿拉尔: 塔里木大学, 2023. |
[31] |
KALAJI H M, SCHANSKER G, LADLE R J, et al. Frequently asked questions about in vivo chlorophyⅡ fluorescence: practical issues[J]. Photosynthesis Research, 2014, 122(2): 121 − 158. doi: 10.1007/s11120-014-0024-6 |
[32] |
GUO Y, TAN J. Recent advances in the application of chlorophyll a fluorescence from photosystem Ⅱ[J]. Photochemistry and Photobiology, 2015, 91(1): 1 − 14. doi: 10.1111/php.12362 |
[33] |
PORCAR-CASTELL A, MALENOVSKý Z, MAGNEY T, et al. ChlorophyⅡ a fluorescence illuminates a path connecting plant molecular biology to Earth-system science[J]. Nature Plants, 2021, 7(8): 998 − 1009. doi: 10.1038/s41477-021-00980-4 |
[34] |
BOLHÀR-NORDENKAMPF H R, OQUIST G. Chlorophyll fluorescenceas a tool in photosynthesis research[M]. Photosynthesis andProduction in a Changing Environment. Dordrecht: SpringerNetherlands. 1993: 193−206. |
[35] |
夏倩. 基于叶绿素荧光的水稻干旱检测技术研究 [D]. 无锡: 江南大学, 2023. |
[36] |
刘韵诗. 缺素与黄龙病对柑橘叶片叶绿素荧光特性和初生代谢的影响 [D]. 福州: 福建农林大学, 2023. |
[37] |
FRIEDL C, FEDOROV D G, RENGER T. Towards a quantitative description of excitonic couplings in photosynthetic pigment-protein complexes: quantum chemistry driven multiscale approaches[J]. Physical Chemistry Chemical Physics, 2022, 24(8): 5014 − 5038. doi: 10.1039/D1CP03566E |
[38] |
ARIEF M A A, KIM H, KURNIAWAN H, et al. Chlorophyll fluorescence imaging for early detection of drought and heat stress in strawberry plants[J]. Plants, 2023, 12(6): 1387. doi: 10.3390/plants12061387 |
[39] |
董贞芬. 低温胁迫下番茄幼苗叶绿素荧光成像的分析及研究 [D]. 沈阳: 沈阳农业大学, 2019. |