[1] |
LAWSON T, BLATT M R. Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency[J]. Plant Physiology, 2014, 164(4): 1556 − 1570. doi: 10.1104/pp.114.237107 |
[2] |
XU Z, ZHOU G. Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass[J]. Journal of Experimental Botany, 2008, 59(12): 3317 − 3325. doi: 10.1093/jxb/ern185 |
[3] |
THOLEN D, BOOM C, ZHU X G. Opinion: prospects for improving photosynthesis by altering leaf anatomy[J]. Plant Science: an International Journal of Experimental Plant Biology, 2012, 197: 92 − 101. |
[4] |
杨克彤, 常海龙, 陈国鹏, 等. 兰州市主要绿化植物气孔性状特征[J]. 植物生态学报, 2021, 45(2): 187 − 196. |
[5] |
刘硕, 樊仙, 全怡吉, 等. 干旱胁迫对甘蔗光合生理特性的影响[J]. 西南农业学报, 2022, 35(8): 1776 − 1785. |
[6] |
FRANKS P J, CASSON S. Connecting stomatal development and physiology[J]. The New Phytologist, 2014, 201(4): 1079 − 1082. doi: 10.1111/nph.12673 |
[7] |
HARRISON E L, ARCE CUBAS L, GRAY J E, et al. The influence of stomatal morphology and distribution on photosynthetic gas exchange[J]. The Plant Journal: for Cell and Molecular Biology, 2020, 101(4): 768 − 779. doi: 10.1111/tpj.14560 |
[8] |
蔡东升, 裴欣睲, 闵筱筱, 等. “三华系列” 油茶叶片解剖结构与光合特性比较分析[J]. 安徽农学通报, 2023, 29(7): 52 − 57. doi: 10.3969/j.issn.1007-7731.2023.07.013 |
[9] |
王孟珂, 田梦妮, 毕泉鑫, 等. 基于气孔性状的文冠果种质资源抗旱性评价及抗旱资源筛选[J]. 植物研究, 2021, 41(6): 957 − 964. doi: 10.7525/j.issn.1673-5102.2021.06.014 |
[10] |
XIAO Y, SLOAN J, HEPWORTH C, et al. Defining the scope for altering rice leaf anatomy to improve photosynthesis: a modelling approach[J]. The New Phytologist, 2023, 237(2): 441 − 453. doi: 10.1111/nph.18564 |
[11] |
WALL S, VIALET-CHABRAND S, DAVEY P, et al. Stomata on the abaxial and adaxial leaf surfaces contribute differently to leaf gas exchange and photosynthesis in wheat[J]. The New Phytologist, 2022, 235(5): 1743 − 1756. doi: 10.1111/nph.18257 |
[12] |
刘刊, 耿士均, 商海燕, 等. 草坪草抗性研究进展[J]. 草业科学, 2012, 29(7): 1058 − 1064. |
[13] |
许涛, 胡旭, 孙劝劝, 等. 海雀稗种质资源币斑病抗性鉴定[J]. 分子植物育种(2023-04-03)[2024-05-01] https://kns.cnki.net/kcms/detail/46.1068.S.20230331.1704.030.html. |
[14] |
PAN L, GEORGE-JAEGGLI B, BORRELL A, et al. Coordination of stomata and vein patterns with leaf width underpins water-use efficiency in a C4 crop [J]. Plant, Cell & Environment, 2022, 45(6): 1612-1630. |
[15] |
罗俊, 张华, 徐良年, 等. 甘蔗不同品种光合特性比较及其聚类分析[J]. 中国农业科学, 2005, 38(8): 1562 − 1569. doi: 10.3321/j.issn:0578-1752.2005.08.009 |
[16] |
龙明秀, 高景慧, 李波, 等. 黑麦草杂交F2代光合及水分利用效率研究[J]. 草地学报, 2009, 17(2): 151 − 156. |
[17] |
SUN G, WASE N, SHU S, et al. Genome of Paspalum vaginatum and the role of trehalose mediated autophagy in increasing maize biomass[J]. Nature Communications, 2022, 13: 7731. doi: 10.1038/s41467-022-35507-8 |
[18] |
LIU Y, DU H, WANG K, et al. Differential photosynthetic responses to salinity stress between two perennial grass species contrasting in salinity tolerance[J]. HortScience, 2011, 46(2): 311 − 316. doi: 10.21273/HORTSCI.46.2.311 |
[19] |
WU P, COGILL S, QIU Y, et al. Comparative transcriptome profiling provides insights into plant salt tolerance in seashore Paspalum (Paspalum vaginatum)[J]. BMC Genomics, 2020, 21(1): 131. doi: 10.1186/s12864-020-6508-1 |
[20] |
申晴, 韦海燕, 卞华, 等. 海雀稗种质资源的耐盐性评价[J]. 热带生物学报, 2020, 11(1): 11 − 19. |
[21] |
张景润, 王彬存. 春季温室内两种竹类植物叶片解剖结构与光合特性研究[J]. 湖北农业科学, 2020, 59(20): 108 − 111. |
[22] |
田英, 朱强, 尹蓉, 等. 基于光合特性的不同欧李种质资源评价[J]. 经济林研究, 2021, 39(2): 1 − 9. |
[23] |
闫雷, 邹莹, 张等宏, 等. 马铃薯叶片光合效率遗传变异分析及高光效种质筛选[J]. 种子, 2022, 41(11): 25 − 30. |
[24] |
何昕孺, 王玉静, 李妍颖, 等. 枸杞光合特性评价及高光效指标筛选[J]. 西北农业学报, 2022, 31(7): 893 − 901. |
[25] |
徐超华, 李纯佳, 陆鑫, 等. 甘蔗近缘种蔗茅(Erianthus fulvus)光合气体交换特性的差异分析[J]. 中国农业科学, 2016, 49(15): 2909 − 2920. |
[26] |
秦茜, 朱俊杰, 关心怡, 等. 七个甘蔗品种叶片解剖结构特征与光合能力和耐旱性的关联[J]. 植物生理学报, 2017, 53(4): 705 − 712. |
[27] |
倪榕蔚, 甘玉婷, 杨桂梅, 等. 热岛效应下亚热带城市植被叶气孔权衡特征及其与叶功能性状的关系[J]. 生态学报, 2023, 43(13): 5336 − 5346. |
[28] |
JONES H G. Partitioning stomatal and non-stomatal limitations to photosynthesis [J]. Plant, Cell & Environment, 1985, 8(2): 95-104. |
[29] |
卫尊征, 潘炜, 赵杏, 等. 我国东北及华北地区小叶杨形态及生理性状遗传多样性研究[J]. 北京林业大学学报, 2010, 32(5): 8 − 14. |
[30] |
BARRATT G E, SPARKES D L, MCAUSLAND L, et al. Anisohydric sugar beet rapidly responds to light to optimize leaf water use efficiency utilizing numerous small stomata[J]. AoB PLANTS, 2021, 13(1): plaa067. doi: 10.1093/aobpla/plaa067 |
[31] |
刘伟成, 郑春芳, 陈琛, 等. 花期海蓬子对盐胁迫的生理响应[J]. 生态学报, 2013, 33(17): 5184 − 5193. |