[1] MOKANY K, RAISON R J, PROKUSHKIN A S. Critical analysis of root: shoot ratios in terrestrial biomes [J]. Global Change Biology, 2006, 12(1): 84 − 96. doi:  10.1111/j.1365-2486.2005.001043.x
[2] POORTER H, NIKLAS K J, REICH P B, et al. Biomass allocation to leaves, stems and roots: meta‐analyses of interspecific variation and environmental control [J]. New Phytologist, 2012, 193(1): 30 − 50. doi:  10.1111/j.1469-8137.2011.03952.x
[3] KEILUWEIT M, BOUGOURE J J, NICO P S, et al. Mineral protection of soil carbon counteracted by root exudates [J]. Nature Climate Change, 2015, 5(6): 588 − 595. doi:  10.1038/nclimate2580
[4] JACKSON R B, MOONEY H A, SCHULZE E D. A global budget for fine root biomass, surface area, and nutrient contents [J]. Proceedings of the National Academy of Sciences, 1997, 94(14): 7362 − 7366. doi:  10.1073/pnas.94.14.7362
[5] WANG P, HUANG K, HU S. Distinct fine-root responses to precipitation changes in herbaceous and woody plants: a meta-analysis [J]. New Phytologist, 2020, 225(4): 1491 − 1499. doi:  10.1111/nph.16266
[6] MCCORMACK M L, DICKIE I A, EISSENSTAT D M, et al. Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes [J]. New Phytologist, 2015, 207(3): 505 − 518. doi:  10.1111/nph.13363
[7] MALHI Y, DOUGHTY C, GALBRAITH D. The allocation of ecosystem net primary productivity in tropical forests [J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366(1582): 3225 − 3245. doi:  10.1098/rstb.2011.0062
[8] SCHARLEMANN J P W, TANNER E V J, HIEDERER R, et al. Global soil carbon: understanding and managing the largest terrestrial carbon pool [J]. Carbon Management, 2014, 5(1): 81 − 91. doi:  10.4155/cmt.13.77
[9] KÖCHY M, HIEDERER R, FREIBAUER A. Global distribution of soil organic carbon–Part 1: Masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world [J]. Soil, 2015, 1(1): 351 − 365. doi:  10.5194/soil-1-351-2015
[10] BAWA K S, SEIDLER R. Natural forest management and conservation of biodiversity in tropical forests [J]. Conservation biology, 1998, 12(1): 46 − 55. doi:  10.1046/j.1523-1739.1998.96480.x
[11] CHAZDON R L, PERES C A, DENT D, et al. The potential for species conservation in tropical secondary forests [J]. Conservation Biology, 2009, 23(6): 1406 − 1417. doi:  10.1111/j.1523-1739.2009.01338.x
[12] 卜文圣, 臧润国, 丁易, 等. 海南岛热带低地雨林群落水平植物功能性状与环境因子相关性随演替阶段的变化[J]. 生物多样性, 2013, 21(3): 278 − 287.
[13] 康冰, 刘世荣, 温远光, 等. 广西大青山南亚热带次生林演替过程的种群动态[J]. 植物生态学报, 2006(6): 931 − 940. doi:  10.3321/j.issn:1005-264X.2006.06.007
[14] 农友, 卢立华, 游建华, 等. 南亚热带不同演替阶段次生林植物多样性及乔木生物量[J]. 中南林业科技大学学报, 2018, 38(12): 83 − 88.
[15] 漆良华, 梁昌强, 毛 超, 等. 海南岛甘什岭热带低地次生雨林物种组成与地理成分[J]. 生态学杂志, 2014, 33(4): 922 − 929.
[16] 郝艳茹, 彭少麟. 根系及其主要影响因子在森林演替过程中的变化[J]. 生态环境, 2005(5): 762 − 767.
[17] 罗东辉, 夏 婧, 袁婧薇, 等. 我国西南山地喀斯特植被的根系生物量初探[J]. 植物生态学报, 2010, 34(5): 611 − 618. doi:  10.3773/j.issn.1005-264x.2010.05.015
[18] 陈云玉, 熊德成, 黄锦学, 等. 中亚热带不同演替阶段的马尾松和米槠人工林的细根生产量研究[J]. 植物生态学报, 2015, 39(11): 1071 − 1081. doi:  10.17521/cjpe.2015.0104
[19]

GIESE L A B, AUST W M, KOLKA R K, et al. Biomass and carbon pools of disturbed riparian forests [J]. Forest Ecology and Management, 2003, 180(1/2/3): 493 − 508.
[20] 毛 超, 漆良华, 刘琦蕊, 等. 海南岛甘什岭无翼坡垒林群落结构与物种多样性[J]. 生态学杂志, 2014, 33(11): 2959 − 2965.
[21] 张荣京, 赵 哲, 苏文拔, 等. 海南甘什岭保护区珍稀濒危植物的分布与评估[J]. 生物多样性, 2015, 23(1): 11 − 17.
[22]

CONDIT R. Tropical forest census plots: methods and results from Barro Colorado Island, Panama and a comparison with other plots[M]. Berlin: Springer Science & Business Media. 1998.
[23] 许 涵, 李意德, 林明献, 等. 海南尖峰岭热带山地雨林60 ha动态监测样地群落结构特征[J]. 生物多样性, 2015, 23(2): 192 − 201. doi:  10.17520/biods.2014157
[24] 邓坤枚, 罗天祥, 张 林, 等. 云南松林的根系生物量及其分布规律的研究[J]. 应用生态学报, 2005, 16(1): 21 − 24. doi:  10.3321/j.issn:1001-9332.2005.01.004
[25]

FORTIER J, TRUAX B, GAGNON D, et al. Abiotic and biotic factors controlling fine root biomass, carbon and nutrients in closed-canopy hybrid poplar stands on post-agricultural land [J]. Scientific Reports, 2019, 9(1): 1 − 15. doi:  10.1038/s41598-018-37186-2
[26]

VANCE E D, NADKARNI N M. Root biomass distribution in a moist tropical montane forest [J]. Plant and Soil, 1992, 142(1): 31 − 39. doi:  10.1007/BF00010172
[27]

SELVAS V D E L A B E N, ALTITUD T A D E B. Biomass variability in tropical American lowland rainforests [J]. Ecotropicos, 2005, 18(1): 1 − 20.
[28]

CAIRNS M A, BROWN S, HELMER E H, et al. Root biomass allocation in the world’s upland forests [J]. Oecologia, 1997, 111(1): 1 − 11. doi:  10.1007/s004420050201
[29]

HOPKINS M S, REDDELL P, HEWETT R K, et al. Comparison of root and mycorrhizal characteristics in primary and secondary rainforest on a metamorphic soil in North Queensland, Australia [J]. Journal of Tropical Ecology, 1996, 12(6): 871 − 885. doi:  10.1017/S0266467400010130
[30]

CASTELLANOS J, MAASS M, KUMMEROW J. Root biomass of a dry deciduous tropical forest in Mexico [J]. Plant and Soil, 1991, 131(2): 225 − 228. doi:  10.1007/BF00009452
[31]

JACKSON R B, CANADELL J, EHLERINGER J R, et al. A global analysis of root distributions for terrestrial biomes [J]. Oecologia, 1996, 108(3): 389 − 411. doi:  10.1007/BF00333714
[32] 韩 畅, 宋 敏, 杜 虎, 等. 广西不同林龄杉木、马尾松人工林根系生物量及碳储量特征[J]. 生态学报, 2017, 37(7): 2282 − 2289.
[33] 邓 磊, 朱春云, 于世川, 等. 祁连山青海云杉中龄林混交度对细根形态特征的影响[J]. 林业科学, 2020, 56(1): 191 − 200. doi:  10.11707/j.1001-7488.20200119
[34] 刘立斌, 钟巧连, 倪 健, 等. 基于生物量回归方程估算黔中喀斯特常绿落叶阔叶混交林木本植物的根系生物量[J]. 生态学报, 2018, 38(24): 8726 − 8732.
[35]

GOWER S T. Relations between mineral nutrient availability and fine root biomass in two Costa Rican tropical wet forests: a hypothesis [J]. Biotropica, 1987, 19(2): 171 − 175. doi:  10.2307/2388741
[36]

GREEN J J, DAWSON L A, PROCTOR J, et al. Fine root dynamics in a tropical rain forest is influenced by rainfall [J]. Plant and Soil, 2005, 276(1/2): 23 − 32.
[37] 朱 江, 韩海荣, 康峰峰, 等. 山西太岳山华北落叶松生物量分配格局与异速生长模型[J]. 生态学杂志, 2016, 35(11): 2918 − 2925.
[38] 祝 乐, 许晨阳, 耿增超, 等. 秦岭3种天然林细根分布特征及其与土壤理化性质的关系[J]. 林业科学, 2020, 56(2): 24 − 31.
[39] 肖兴翠, 李志辉, 梁明武, 等. 林分密度对湿地松根系生物量及其分布的影响[J]. 森林与环境学报, 2015, 35(1): 45 − 52.
[40]

HALL J, MUSCARELLA R, QUEBBEMAN A, et al. Hurricane-induced rainfall is a stronger predictor of tropical forest damage in Puerto Rico than maximum wind speeds [J]. Scientific Reports, 2020, 10(1): 1 − 10. doi:  10.1038/s41598-019-56847-4