[1] SALEKDEH G H, REYNOLDS M, BENNETT J, et al. Conceptual framework for drought phenotyping during molecular breeding[J]. Trends in Plant Science, 2009, 14(9): 488 − 496. doi:  10.1016/j.tplants.2009.07.007
[2] MøLLER I M, SWEETLOVE L J. ROS signalling–specificity is required[J]. Trends in Plant Science, 2010, 15(7): 370 − 374. doi:  10.1016/j.tplants.2010.04.008
[3] GILL S S, TUTEJA N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiology and Biochemistry, 2010, 48(12): 909 − 930. doi:  10.1016/j.plaphy.2010.08.016
[4] 蔡冰冰. 番茄果糖-1, 6-二磷酸醛缩酶基因表达特性及其对光合作用的调控 [D]. 泰安: 山东农业大学, 2017.
[5]

COOKE M S, EVANS M D, DIZDAROGLU M, et al. Oxidative DNA damage: mechanisms, mutation, and disease[J]. FASEB Journal, 2003, 17(10): 1195 − 1214. doi:  10.1096/fj.02-0752rev
[6]

NOCTOR G, FOYER C H. ASCORBATE AND GLUTATHIONE: keeping active oxygen under control[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1998, 49: 249 − 279. doi:  10.1146/annurev.arplant.49.1.249
[7]

LIU C, LIN J Z, WANG Y, et al. The protein phosphatase PC1 dephosphorylates and deactivates CatC to negatively regulate H2O2 homeostasis and salt tolerance in rice[J]. The Plant Cell, 2023, 35(9): 3604 − 3625. doi:  10.1093/plcell/koad167
[8] 马鑫磊, 许瑞琪, 索晓曼, 等. 谷子Ⅲ型PRX基因家族全基因组鉴定及干旱胁迫下表达分析[J]. 作物学报, 2022, 48(10): 2517 − 2532.
[9]

SHIGEOKA S, ISHIKAWA T, TAMOI M, et al. Regulation and function of ascorbate peroxidase isoenzymes[J]. Journal of Experimental Botany, 2002, 53(372): 1305 − 1319. doi:  10.1093/jexbot/53.372.1305
[10]

PIONTEK K, SMITH A T, BLODIG W. Lignin peroxidase structure and function [J]. Biochemical Society Transactions, 2001, 29(Pt 2): 111−116.
[11]

TOGNOLLI M, PENEL C, GREPPIN H, et al. Analysis and expression of the class peroxidase large gene family in Arabidopsis thaliana[J]. Gene, 2002, 288(1/2): 129 − 138.
[12]

WANG Y, WANG Q, ZHAO Y, et al. Systematic analysis of maize class peroxidase gene family reveals a conserved subfamily involved in abiotic stress response[J]. Gene, 2015, 566(1): 95 − 108. doi:  10.1016/j.gene.2015.04.041
[13]

YANG X, YUAN J, LUO W, et al. Genome-wide identification and expression analysis of the class peroxidase gene family in potato (Solanum tuberosum L.)[J]. Frontiers in Genetics, 2020, 11: 593577. doi:  10.3389/fgene.2020.593577
[14]

YAN J, SU P, LI W, et al. Genome-wide and evolutionary analysis of the class peroxidase gene family in wheat and Aegilops tauschii reveals that some members are involved in stress responses[J]. BMC Genomics, 2019, 20(1): 666. doi:  10.1186/s12864-019-6006-5
[15]

MENG G, FAN W, RASMUSSEN S K. Characterisation of the class peroxidase gene family in carrot taproots and its role in anthocyanin and lignin accumulation[J]. Plant Physiology and Biochemistry, 2021, 167: 245 − 256. doi:  10.1016/j.plaphy.2021.08.004
[16]

CONDON A G, RICHARDS R A, REBETZKE G J, et al. Breeding for high water-use efficiency[J]. Journal of Experimental Botany, 2004, 55(407): 2447 − 2460. doi:  10.1093/jxb/erh277
[17]

SPECHT J E, CHASE K, MACRANDER M, et al. Soybean response to water: a QTL analysis of drought tolerance[J]. Crop Science, 2001, 41(2): 493 − 509. doi:  10.2135/cropsci2001.412493x
[18]

GUIMARÃES-DIAS F, NEVES-BORGES A C, VIANA A A B, et al. Expression analysis in response to drought stress in soybean: Shedding light on the regulation of metabolic pathway genes [J]. Genetics and Molecular Biology, 2012, 35(1 (suppl)): 222−232.
[19]

ZHOU Y, LIU W, LI X, et al. Integration of sRNA, degradome, transcriptome analysis and functional investigation reveals gma-miR398c negatively regulates drought tolerance via GmCSDs and GmCCS in transgenic Arabidopsis and soybean[J]. BMC Plant Biology, 2020, 20(1): 190. doi:  10.1186/s12870-020-02370-y
[20] 张引鹤, 周永刚, 高红桃, 等. 大豆(Glycine max)SUT4基因的克隆、表达及抗逆功能的鉴定[J]. 分子植物育种, 2022, 20(17): 5578 − 5587.
[21]

CLOUGH S J, BENT A F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana[J]. The Plant Journal, 1998, 16(6): 735 − 743. doi:  10.1046/j.1365-313x.1998.00343.x
[22]

CAI B, LI Q, XU Y, et al. Genome-wide analysis of the fructose 1, 6-bisphosphate aldolase (FBA) gene family and functional characterization of FBA7 in tomato[J]. Plant Physiology and Biochemistry, 2016, 108: 251 − 265. doi:  10.1016/j.plaphy.2016.07.019
[23]

LIU C, ZHU P, FAN W, et al. Functional analysis of drought and salt tolerance mechanisms of mulberry RACK1 gene[J]. Tree Physiology, 2019, 39(12): 2055 − 2069. doi:  10.1093/treephys/tpz108
[24]

M-HAMVAS M, MÁTHÉ C, VASAS G, et al. Cylindrospermopsin and microcystin-LR alter the growth, development and peroxidase enzyme activity of white mustard (Sinapis alba L.) seedlings, a comparative analysis [J]. Acta Biologica Hungarica, 2010, 61 Suppl: 35−48.
[25]

WU C, DING X, DING Z, et al. The class peroxidase (POD) gene family in cassava: identification, phylogeny, duplication, and expression[J]. International Journal of Molecular Sciences, 2019, 20(11): 2730. doi:  10.3390/ijms20112730
[26]

KIDWAI M, DHAR Y V, GAUTAM N, et al. Oryza sativa class Ⅲ peroxidase (OsPRX38) overexpression in Arabidopsis thaliana reduces arsenic accumulation due to apoplastic lignification[J]. Journal of Hazardous Materials, 2019, 362: 383 − 393. doi:  10.1016/j.jhazmat.2018.09.029
[27]

ZHANG Z, MA J, YANG X, et al. Natural allelic diversities of GmPrx16 confer drought tolerance in soybean[J]. Plant Biotechnology Journal, 2024, 22(3): 535 − 537. doi:  10.1111/pbi.14249
[28]

WANG L F, WANG J K, AN F, et al. Molecular cloning and characterization of a stress responsive peroxidase gene HbPRX42 from rubber tree[J]. Brazilian Journal of Botany, 2016, 39(2): 475 − 483. doi:  10.1007/s40415-016-0263-1
[29]

JIN T, SUN Y, ZHAO R, et al. Overexpression of peroxidase gene GsPRX9 confers salt tolerance in soybean[J]. International Journal of Molecular Sciences, 2019, 20(15): 3745. doi:  10.3390/ijms20153745
[30]

ALEEM M, RIAZ A, RAZA Q, et al. Genome-wide characterization and functional analysis of class peroxidase gene family in soybean reveal regulatory roles of GsPOD40 in drought tolerance[J]. Genomics, 2022, 114(1): 45 − 60. doi:  10.1016/j.ygeno.2021.11.016
[31] 张丽雅. 棉花黄萎病抗性相关基因GhPrx14的功能分析和棉花OFP家族的生物信息学分析 [D]. 郑州: 郑州大学, 2022.
[32]

ZHANG H, WANG Z, LI X, et al. The IbBBX24–IbTOE3–IbPRX17 module enhances abiotic stress tolerance by scavenging reactive oxygen species in sweet potato[J]. New Phytologist, 2022, 233(3): 1133 − 1152. doi:  10.1111/nph.17860
[33]

WANG X, LIU H, ZHANG D, et al. Photosynthetic carbon fixation and sucrose metabolism supplemented by weighted gene co-expression network analysis in response to water stress in rice with overlapping growth stages[J]. Frontiers in Plant Science, 2022, 13: 864605. doi:  10.3389/fpls.2022.864605