[1] NOLAN T, HANDS R E, BUSTIN S A. Quantification of mRNA using real-time RT-PCR[J]. Nature Protocols, 2006, 1(3): 1559 − 1582. doi:  10.1038/nprot.2006.236
[2] SOWA S, SOZONIUK M, TOPOROWSKA J, et al. Validation of reference genes as an internal control for studying Avena sativa–Puccinia coronata interaction by RT-qPCR[J]. Scientific Reports, 2022, 12(1): 14601. doi:  10.1038/s41598-022-18746-z
[3] SU B, LI Z, LIU H, et al. Identification and validation of reference genes for RT-qPCR analysis in Iris domestica under Cd stress[J]. Heliyon, 2024, 10(17): e36923. doi:  10.1016/j.heliyon.2024.e36923
[4] YANG Y, CAO G, TANG L. Selection and validation of reference genes for qRT-PCR normalization in dayflower (Commelina communis) based on the transcriptome profiling[J]. BMC Plant Biology, 2024, 24(1): 1131 − 1143. doi:  10.1186/s12870-024-05853-4
[5] VANGUILDER H D, VRANA K E, FREEMAN W M. Twenty-Five Years of Quantitative PCR for Gene Expression Analysis[J]. BioTechniques, 2008, 44(5): 619 − 626. doi:  10.2144/000112776
[6] TANG X, ZHANG N, SI H, et al. Selection and validation of reference genes for RT-qPCR analysis in potato under abiotic stress[J]. Plant Methods, 2017, 13(1): 85. doi:  10.1186/s13007-017-0238-7
[7] ZHANG J, HE X, ZHOU J, et al. Selection and Verification of Standardized Reference Genes of Angelica dahurica under Various Abiotic Stresses by Real-Time Quantitative PCR[J]. Genes, 2024, 15(1): 79 − 95. doi:  10.3390/genes15010079
[8] JEONG Y M, MUN J H, LEE I, et al. Distinct Roles of the First Introns on the Expression of Arabidopsis Profilin Gene Family Members[J]. Plant Physiology, 2006, 140(1): 196 − 209. doi:  10.1104/pp.105.071316
[9] 方佳, 濮文辉, 张慧坚. 国内外木薯产业发展近况[J]. 中国农学通报, 2010, 26(16): 353 − 361.
[10] 梁露锋, 玉琼广, 刘洁. 木薯产业发展动态及展望前景[J]. 大众科技, 2011, 128(6): 128 − 130. doi:  10.3969/j.issn.1008-1151.2011.06.057
[11] 严华兵, 叶剑秋, 李开绵. 中国木薯育种研究进展[J]. 中国农学通报, 2015, 31(15): 63 − 70. doi:  10.11924/j.issn.1000-6850.casb14110159
[12] 刘佳, 张箭. 美洲木薯在非洲的引种和推广[J]. 世界农业, 2019, 14(2): 83 − 88.
[13] 陈松笔, 蔡杰, 安飞飞, 等. 木薯育种现状及发展趋势[J]. 中国科学: 生命科学, 2024, 54(10): 1833 − 1842.
[14]

AMELEWORK A B, BAIRU M W. Advances in Genetic Analysis and Breeding of Cassava (Manihot esculenta Crantz): A Review[J]. Plants, 2022, 11(12): 1617 − 1635. doi:  10.3390/plants11121617
[15]

CARLOS A. Z -C, CRUZ G D, VERDIER V, et al. Cassava diseases caused by Xanthomonas phaseoli pv. manihotis cassavae[J]. Molecular Plant Pathology, 2021, 22(12): 1520 − 1537. doi:  10.1111/mpp.13094
[16] 李超萍, 时涛, 刘先宝, 等. 国内木薯病害普查及细菌性萎蔫病安全性评估[J]. 热带作物学报, 2011, 32(1): 116 − 121.
[17]

CARLOSA Z C, MOUFID Y, LóPEZ C E, et al. First Report of Cassava Bacterial Blight Caused by Xanthomonas phaseoli pv. manihotis in the Amazonian Forest of Ecuador[J]. Plant Disease, 2024, 108(6): 1879.
[18]

HU M, HU W, XIA Z, et al. Validation of Reference Genes for Relative Quantitative Gene Expression Studies in Cassava (Manihot esculenta Crantz) by Using Quantitative Real-Time PCR[J]. Frontiers in Plant Science, 2016, 7: 680.
[19]

MORENO I, GRUISSEM W, VANDERSCHUREN H. Reference genes for reliable potyvirus quantitation in cassava and analysis of Cassava brown streak virus load in host varieties[J]. Journal of Virological Methods, 2011, 177(1): 49 − 54. doi:  10.1016/j.jviromet.2011.06.013
[20]

CZECHOWSKI T, STITT M, ALTMANN T, et al. Genome-Wide Identification and Testing of Superior Reference Genes for Transcript Normalization in Arabidopsis[J]. Plant Physiology, 2005, 139(1): 5 − 17. doi:  10.1104/pp.105.063743
[21]

CHANG Y, BAI Y, WEI Y, et al. CAMTA3 negatively regulates disease resistance through modulating immune response and extensive transcriptional reprogramming in cassava[J]. Tree Physiology, 2020, 40(11): 1520 − 1533. doi:  10.1093/treephys/tpaa093
[22]

ZHENG L, GAO S, BAI Y, et al. NF‐YC15 transcription factor activates ethylene biosynthesis and improves cassava disease resistance[J]. Plant Biotechnology Journal, 2024, 22(9): 2424 − 2434. doi:  10.1111/pbi.14355
[23]

ZHU S, PAN Y, LI K, et al. Complete Genome Sequence of Xanthomonas phaseoli pv. manihotis Strain CHN01, the Causal Agent of Cassava Bacterial Blight[J]. Plant Disease, 2022, 106(3): 1039 − 1041. doi:  10.1094/PDIS-09-21-2016-A
[24]

WEI Y, SHI H, XIA Z, et al. Genome-Wide Identification and Expression Analysis of the WRKY Gene Family in Cassava[J]. Frontiers in Plant Science, 2016, 7: 25.
[25]

TONG Z, GAO Z, WANG F, et al. Selection of reliable reference genes for gene expression studies in peach using real-time PCR[J]. BMC Molecular Biology, 2009, 10: 71. doi:  10.1186/1471-2199-10-71
[26]

ZHONG H Y, CHEN J W, LI C Q, et al. Selection of reliable reference genes for expression studies by reverse transcription quantitative real-time PCR in litchi under different experimental conditions[J]. Plant Cell Reports, 2011, 30(4): 641 − 653. doi:  10.1007/s00299-010-0992-8
[27]

NICOT N, HAUSMAN J F, HOFFMANN L, et al. Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress[J]. Journal of Experimental Botany, 2005, 56(421): 2907 − 2914. doi:  10.1093/jxb/eri285
[28]

GAO K, KHAN WU, LI J, et al. Identification and Validation of Reliable Reference Genes for Gene Expression Studies in Koelreuteria paniculata[J]. Genes, 2022, 13(5): 714 − 725. doi:  10.3390/genes13050714
[29]

LI X, CHENG J, ZHANG J, et al. Validation of Reference Genes for Accurate Normalization of Gene Expression in Lilium davidii var. unicolor for Real Time Quantitative PCR[J]. Plos One, 2015, 10(10): 28 − 43.
[30]

LI G, SUN X, ZHU X, et al. Selection and Validation of Reference Genes in Virus-Infected Sweet Potato Plants[J]. Genes, 2023, 14(7): 1477 − 1488. doi:  10.3390/genes14071477
[31]

MASCIA T, SANTOVITO E, GALLITELLI D, et al. Evaluation of reference genes for quantitative reverse‐transcription polymerase chain reaction normalization in infected tomato plants[J]. Molecular Plant Pathology, 2010, 11(6): 805 − 816. doi:  10.1111/j.1364-3703.2010.00646.x
[32] 唐枝娟, 刘秦, 肖晓蓉, 等. 白叶枯病菌侵染下的水稻内参基因稳定性[J]. 分子植物育种, 2017, 15(1): 300 − 306.