[1] |
BROWN A L, CAVAGNARO T R, GLEADOW R, et al.Interactive effects of temperature and drought on cassava growth and toxicity:implications for food security?[J]. Global Change Biology, 2016, 22(10):3461-3473. |
[2] |
LI S, CUI Y, ZHOU Y, et al. The industrial applications of cassava:current status, opportunities and prospects[J]. Journal of the Science of Food and Agriculture, 2017,97(8):2282-2290. |
[3] |
AINSWORTH E A, LONG S P. 30 years of free-air carbon dioxide enrichment(FACE):what have we learned about future crop productivity and its potential for adaptation?[J]. Global Change Biology, 2021, 27(1):27-49. |
[4] |
UTSUMI Y, TANAKA M, MOROSAWA T, et al. Transcriptome analysis using a high-density oligomicroarray under drought stress in various genotypes of cassava:an important tropical crop[J]. DNA Research:an International Journal for Rapid Publication of Reports on Genes and Genomes, 2012, 19(4):335-345. |
[5] |
YE Z Q, WANG J M, WANG W J, et al. Effects of root phenotypic changes on the deep rooting of Populus euphratica seedlings under drought stresses[J]. PeerJ, 2019, 7:e6513. |
[6] |
LI X, SMITH R, CHOAT B, et al. Drought resistance of cotton(Gossypium hirsutum) is promoted by early stomatal closure and leaf shedding[J]. Functional Plant Biology:FPB, 2020, 47(2):91-98. |
[7] |
EL-SHARKAWY M A. Cassava biology and physiology[J]. Plant Molecular Biology, 2004, 56(4):481-501. |
[8] |
于晓玲,王淦,阮孟斌,等.水分胁迫对不同木薯品种叶片生理生化的影响[J]. 中国农学通报, 2012, 28(33):60-64. |
[9] |
HETHERINGTON A M, WOODWARD F I. The role of stomata in sensing and driving environmental change[J]. Nature, 2003, 424:901-908. |
[10] |
CAINE R S, HARRISON E L, SLOAN J, et al. The influences of stomatal size and density on rice abiotic stress resilience[J]. The New Phytologist, 2023, 237(6):2180-2195. |
[11] |
MARRON N, DILLEN S Y, CEULEMANS R. Evaluation of leaf traits for indirect selection of high yielding poplar hybrids[J]. Environmental and Experimental Botany,2007, 61(2):103-116. |
[12] |
单提波,姚文钧,徐正进,等.不同气孔密度水稻剑叶光合特性及蔗糖代谢研究[J]. 中国水稻科学, 2015,29(6):648-652. |
[13] |
陈璐,陈默,吴志鹏,等.水分胁迫下木薯(NZ199)苗期生理响应分析[J]. 江西农业大学学报, 2023, 45(4):855-865. |
[14] |
WANG B, GUO X, ZHAO P, et al. Molecular diversity analysis, drought related marker-traits association mapping and discovery of excellent alleles for 100-day old plants by EST-SSRs in cassava germplasms(Manihot esculenta Cranz)[J]. PLoS One, 2017, 12(5):e0177456. |
[15] |
李俊,杨玉皎,王文丽,等. UV-B辐射增强对马铃薯叶片结构及光合参数的影响[J]. 生态学报, 2017, 37(16):5368-5381. |
[16] |
季蕾蕾,木泰华,孙红男.不同干燥方式对甘薯叶片水分迁移、微观结构、色泽及复水性能影响的比较[J]. 食品科学, 2020, 41(11):90-96. |
[17] |
|
[18] |
王巧艳.玉米副卫细胞中H2O2与气孔开关的关系及其来源探究[D]. 杨凌:西北农林科技大学, 2016. |
[19] |
BESTETTI S, MEDRAÑO-FERNANDEZ I, GALLI M, et al. A persulfidation-based mechanism controls aquaporin-8conductance[J]. Science Advances, 2018, 4(5):eaar5770. |
[20] |
YU H, CHEN X, HONG Y Y, et al. Activated expression of an Arabidopsis HD-START protein confers drought tolerance with improved root system and reduced stomatal density[J]. The Plant Cell, 2008, 20(4):1134-1151. |
[21] |
YOO C Y, PENCE H E, JIN J B, et al. The Arabidopsis GTL1 transcription factor regulates water use efficiency and drought tolerance by modulating stomatal density via transrepression of SDD1[J]. The Plant Cell, 2012, 22(12):4128-4141. |
[22] |
FRANKS P J, DOHENY-ADAMS T W, BRITTONHARPER Z J, et al. Increasing water-use efficiency directly through genetic manipulation of stomatal density[J]. The New Phytologist, 2015, 207(1):188-195. |
[23] |
HEPWORTH C, DOHENY-ADAMS T, HUNT L, et al.Manipulating stomatal density enhances drought tolerance without deleterious effect on nutrient uptake[J]. The New Phytologist, 2015, 208(2):336-341. |
[24] |
MENG L S, YAO S Q. Transcription co-activator Arabidopsis ANGUSTIFOLIA3(AN3) regulates water-use efficiency and drought tolerance by modulating stomatal density and improving root architecture by the transrepression of YODA(YDA)[J]. Plant Biotechnology Journal,2015, 13(7):893-902. |
[25] |
KUMAR S, TRIPATHI S, SINGH S P, et al. Rice breeding for yield under drought has selected for longer flag leaves and lower stomatal density[J]. Journal of Experimental Botany, 2021, 72(13):4981-4992. |
[26] |
XIN H, LI Q, WANG S, et al. Saussurea involucrata PIP2;4 improves growth and drought tolerance in Nicotiana tabacum by increasing stomatal density and sensitivity[J]. Plant Science:an International Journal of Experimental Plant Biology, 2023, 326:111526. |
[27] |
何士敏,汪建华,秦家顺.几种沙棘叶片组织结构特点和抗旱性比较[J]. 林业科技开发, 2009, 23(1):16-19. |
[28] |
XU Z, ZHOU G. Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass[J]. Journal of Experimental Botany, 2008, 59(12):3317-3325. |