[1] 钱双杰. 拟南芥生长素响应因子ARF17调控LTPG4对花粉管伸长影响 [D]. 上海: 上海师范大学, 2024.
[2] 温绍廷. 生长素调控拟南芥不定根再生的分子机制研究 [D]. 上海: 上海师范大学, 2021.
[3]

WANG X, YU R, WANG J, et al. The asymmetric expression of SAUR genes mediated by ARF7/19 promotes the gravitropism and phototropism of plant hypocotyls[J]. Cell Reports, 2020, 31(3): 107529. doi:  10.1016/j.celrep.2020.107529
[4]

ZHANG F, TAO W, SUN R, et al. Correction: PRH1 mediates ARF7-LBD dependent auxin signaling to regulate lateral root development in Arabidopsis thaliana[J]. PLoS Genetics, 2022, 18(3): e1010125. doi:  10.1371/journal.pgen.1010125
[5] 臧鹏跃. 番茄SlARF3对果实大小、可溶性糖以及有机酸影响的初步研究 [D]. 沈阳: 沈阳农业大学, 2021.
[6] 徐富贵. OsARF18调控水稻根系发育和磷素吸收的机制研究 [D]. 郑州: 河南农业大学, 2021.
[7]

QIAO J, ZHANG Y, HAN S, et al. OsARF4 regulates leaf inclination via auxin and brassinosteroid pathways in rice[J]. Frontiers in Plant Science, 2022, 13: 979033. doi:  10.3389/fpls.2022.979033
[8]

ZHAO Z X, YIN X X, LI S, et al. miR167d-ARFs module regulates flower opening and stigma size in rice[J]. Rice, 2022, 15(1): 40. doi:  10.1186/s12284-022-00587-z
[9]

ZHANG X, CAO J, HUANG C, et al. Characterization of cotton ARF factors and the role of GhARF2b in fiber development[J]. BMC Genomics, 2021, 22(1): 202. doi:  10.1186/s12864-021-07504-6
[10]

ZHANG H, LI L, HE Y, et al. Distinct modes of manipulation of rice auxin response factor OsARF17 by different plant RNA viruses for infection[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(16): 9112 − 9121.
[11]

CARUANA J C, DHAR N, RAINA R. Overexpression of Arabidopsis microRNA167 induces salicylic acid-dependent defense against Pseudomonas syringae through the regulation of its targets ARF6 and ARF8[J]. Plant Direct, 2020, 4(9): e00270. doi:  10.1002/pld3.270
[12]

LI J, WU F, HE Y, et al. Maize transcription factor ZmARF4 confers phosphorus tolerance by promoting root morphological development[J]. International Journal of Molecular Sciences, 2022, 23(4): 2361. doi:  10.3390/ijms23042361
[13]

WANG C, LI X, ZHUANG Y, et al. A novel miR160a-GmARF16-GmMYC2 module determines soybean salt tolerance and adaptation[J]. The New Phytologist, 2024, 241(5): 2176 − 2192. doi:  10.1111/nph.19503
[14] 马俊杰, 郭凤丹, 王兴军, 等. 生长素合成、运输和信号转导调控植物胚胎早期发育[J]. 植物生理学报, 2019, 55(5): 547 − 557.
[15] 吴元彩,王东登,郑旭阳,等. 激素和蔗糖对番茄子叶节位侧芽萌发与生长的影响[J]. 南方农业学报, 2024, 55(2): 509 − 519.
[16] 庞祥宇. 木薯IAA/ARF基因家族预测、表达及功能分析 [D]. 南宁: 广西大学, 2019.
[17]

LI Y, HAN S, QI Y. Advances in structure and function of auxin response factor in plants[J]. Journal of Integrative Plant Biology, 2023, 65(3): 617 − 632. doi:  10.1111/jipb.13392
[18]

SWAMINATHAN K, PETERSON K, JACK T. The plant B3 superfamily[J]. Trends in Plant Science, 2008, 13(12): 647 − 655. doi:  10.1016/j.tplants.2008.09.006
[19]

CANCé C, MARTIN-AREVALILLO R, BOUBEKEUR K, et al. Auxin response factors are keys to the many auxin doors[J]. The New Phytologist, 2022, 235(2): 402 − 419. doi:  10.1111/nph.18159
[20]

FONTANA M, ROOSJEN M, CRESPO GARCíA I, et al. Cooperative action of separate interaction domains promotes high-affinity DNA binding of Arabidopsis thaliana ARF transcription factors[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(11): e2219916120.
[21]

WANG Y, LI Y, HE S P, et al. The transcription factor ERF108 interacts with AUXIN RESPONSE FACTORs to mediate cotton fiber secondary cell wall biosynthesis[J]. The Plant Cell, 2023, 35(11): 4133 − 4154. doi:  10.1093/plcell/koad214
[22]

LIU K, LI Y, CHEN X, et al. ERF72 interacts with ARF6 and BZR1 to regulate hypocotyl elongation in Arabidopsis[J]. Journal of Experimental Botany, 2018, 69(16): 3933 − 3947. doi:  10.1093/jxb/ery220
[23]

ZHANG T, LI W, XIE R, et al. CpARF2 and CpEIL1 interact to mediate auxin-ethylene interaction and regulate fruit ripening in papaya[J]. The Plant Journal: for Cell and Molecular Biology, 2020, 103(4): 1318 − 1337. doi:  10.1111/tpj.14803
[24] 李秉贞. 生长素响应因子ARF4通过与IAA12互作调控拟南芥芽再生 [D]. 泰安: 山东农业大学, 2020.
[25]

HSIEH W Y, LIN S C, HSIEH M H. Transformation of nad7 into the nuclear genome rescues the slow growth3 mutant in Arabidopsis[J]. RNA Biology, 2018, 15(11): 1385 − 1391. doi:  10.1080/15476286.2018.1546528
[26]

XU Y, SHEN J, RUAN H, et al. A RhoGAP controls apical actin polymerization by inhibiting formin in Arabidopsis pollen tubes [J]. Current Biology: CB, 2024, 34(21): 5040 − 5053. e6.
[27]

HU J, SU H, CAO H, et al. AUXIN RESPONSE FACTOR7 integrates gibberellin and auxin signaling via interactions between DELLA and AUX/IAA proteins to regulate cambial activity in poplar[J]. The Plant Cell, 2022, 34(7): 2688 − 2707. doi:  10.1093/plcell/koac107
[28]

HINA A, KHAN N, KONG K, et al. Exploring the role of FBXL fbxl gene family in Soybean: implications for plant height and seed size regulation[J]. Physiologia Plantarum, 2024, 176(1): e14191. doi:  10.1111/ppl.14191
[29]

PERALES L, PEñARRUBIA L, CORNEJO M J. Induction of a polyubiquitin gene promoter by dehydration stresses in transformed rice cells[J]. Journal of Plant Physiology, 2008, 165(2): 159 − 171. doi:  10.1016/j.jplph.2006.12.012