[1] BAXTER A, MITTLER R, SUZUKI N. ROS as key players in plant stress signalling[J]. Journal of Experimental Botany, 2014, 65(5): 1229 − 1240. doi:  10.1093/jxb/ert375
[2] PETROV V, HILLE J, MUELLER-ROEBER B, et al. ROS-mediated abiotic stress-induced programmed cell death in plants[J]. Frontiers in Plant Science, 2015, 6: 69.
[3] XIE X, HE Z, CHEN N, et al. The roles of environmental factors in regulation of oxidative stress in plant[J]. BioMed Research International, 2019, 2019(1): 9732325.
[4] RODRIGUES A, ADAMO M, CROZET P, et al. ABI1 and PP2CA phosphatases are negative regulators of Snf1-related protein kinase1 signaling in Arabidopsis[J]. The Plant Cell, 2013, 25(10): 3871 − 3884. doi:  10.1105/tpc.113.114066
[5] BAENA-GONZáLEZ E, ROLLAND F, THEVELEIN J M, et al. A central integrator of transcription networks in plant stress and energy signalling[J]. Nature, 2007, 448(7156): 938 − 942. doi:  10.1038/nature06069
[6] IM J H, CHO Y H, KIM G D, et al. Inverse modulation of the energy sensor Snf1-related protein kinase 1 on hypoxia adaptation and salt stress tolerance in Arabidopsis thaliana [J]. Plant, Cell & Environment, 2014, 37(10): 2303−2312.
[7] MATíAS-HERNáNDEZ L, AGUILAR-JARAMILLO A E, MARíN-GONZáLEZ E, et al. RAV genes: regulation of floral induction and beyond[J]. Annals of Botany, 2014, 114(7): 1459 − 1470. doi:  10.1093/aob/mcu069
[8] SOHN K H, LEE S C, JUNG H W, et al. Expression and functional roles of the pepper pathogen-induced transcription factor RAV1 in bacterial disease resistance, and drought and salt stress tolerance[J]. Plant Molecular Biology, 2006, 61(6): 897 − 915. doi:  10.1007/s11103-006-0057-0
[9] DUAN Y B, LI J, QIN R Y, et al. Identification of a regulatory element responsible for salt induction of rice OsRAV2 through ex situ and in situ promoter analysis[J]. Plant Molecular Biology, 2016, 90(1/2): 49 − 62.
[10] 王鹏. RAV转录因子在木薯抗细菌性枯萎病和氧化应激反应中的功能解析 [D]. 海口: 海南大学, 2022.
[11]

YAN Y, LIU W, WEI Y, et al. MeCIPK23 interacts with Whirly transcription factors to activate abscisic acid biosynthesis and regulate drought resistance in cassava[J]. Plant Biotechnology Journal, 2020, 18(7): 1504 − 1506. doi:  10.1111/pbi.13321
[12]

WANG P, YAN Y, BAI Y, et al. Phosphorylation of RAV1/2 by KIN10 is essential for transcriptional activation of CAT6/7, which underlies oxidative stress response in cassava[J]. Cell Reports, 2024, 43(7): 114467. doi:  10.1016/j.celrep.2024.114467
[13] 关玲, 赵密珍, 王庆莲, 等. 改良CTAB方法提取果树不同组织的RNA [J]. 江苏农业科学, 2018, 46(15): 19−22.
[14]

POLGE C, THOMAS M. SNF1/AMPK/SnRK1 kinases, global regulators at the heart of energy control?[J]. Trends in Plant Science, 2007, 12(1): 20 − 28. doi:  10.1016/j.tplants.2006.11.005
[15] 王红蕾. 植物能量感受器SnRK1抑制硝态氮信号转导的机理研究 [D]. 济南: 山东大学, 2022.
[16]

ZHENG X, YANG H, ZOU J, et al. SnRK1α1-mediated RBOH1 phosphorylation regulates reactive oxygen species to enhance tolerance to low nitrogen in tomato[J]. The Plant Cell, 2024, 37(1): koae321. doi:  10.1093/plcell/koae321
[17]

YAN Y, WANG P, HE J, et al. KIN10-mediated HB16 protein phosphorylation and self-association improve cassava disease resistance by transcriptional activation of lignin biosynthesis genes[J]. Plant Biotechnology Journal, 2024, 22(10): 2709 − 2723. doi:  10.1111/pbi.14386
[18]

CROZET P, MARGALHA L, CONFRARIA A, et al. Mechanisms of regulation of SNF1/AMPK/SnRK1 protein kinases[J]. Frontiers in Plant Science, 2014, 5: 190.
[19]

CROZET P, JAMMES F, VALOT B, et al. Cross-phosphorylation between Arabidopsis thaliana sucrose nonfermenting 1-related protein kinase 1 (AtSnRK1) and its activating kinase (AtSnAK) determines their catalytic activities[J]. Journal of Biological Chemistry, 2010, 285(16): 12071 − 12077. doi:  10.1074/jbc.M109.079194
[20] 王红蕾. 植物能量感受器SnRK1抑制硝态氮信号转导的机理研究 [D]. 济南: 山东大学, 2022.
[21]

HANKS S K, HUNTER T. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification1[J]. The FASEB Journal, 1995, 9(8): 576 − 596. doi:  10.1096/fasebj.9.8.7768349
[22]

BAENA-GONZáLEZ E, ROLLAND F, THEVELEIN J M, et al. A central integrator of transcription networks in plant stress and energy signalling[J]. Nature, 2007, 448(7156): 938 − 942. doi:  10.1038/nature06069
[23]

HAN X, ZHANG L, ZHAO L, et al. SnRK1 phosphorylates and destabilizes WRKY3 to enhance barley immunity to powdery mildew[J]. Plant Communications, 2020, 1(4): 100083. doi:  10.1016/j.xplc.2020.100083
[24]

BRIGHT N J, THORNTON C, CARLING D. The regulation and function of mammalian AMPK-related kinases[J]. Acta Physiologica, 2009, 196(1): 15 − 26.
[25]

FARRáS R, FERRANDO A, JáSIK J, et al. SKP1-SnRK protein kinase interactions mediate proteasomal binding of a plant SCF ubiquitin ligase[J]. The EMBO Journal, 2001, 20(11): 2742 − 2756. doi:  10.1093/emboj/20.11.2742
[26]

RODRIGUES A, ADAMO M, CROZET P, et al. ABI1 and PP2CA phosphatases are negative regulators of Snf1-related protein kinase1 signaling in Arabidopsis[J]. The Plant Cell, 2013, 25(10): 3871 − 3884. doi:  10.1105/tpc.113.114066