[1] 朱荣松, 邓九胜, 李勇. 水稻产量与氮肥利用率对不同配方肥料的响应[J]. 现代农业, 2008(10): 17 − 21. doi:  10.3969/j.issn.1008-0708.2008.10.016
[2] 李初军, 刘建萍, 贾丽颖, 等. 我国水稻育种的现状与展望[J]. 中国种业, 2007(1): 11 − 12. doi:  10.3969/j.issn.1671-895X.2007.01.004
[3] 高明君, 何祖华. 水稻免疫机制研究进展[J]. 中国科学: 生命科学, 2013, 43(12): 1016 − 1029. doi:  10.1360/052013-311
[4]

TENG K P, LIU Q, ZHANG M, et al. Design and enantioselective synthesis of chiral pyranone fused indole derivatives with antibacterial activities against Xanthomonas oryzae pv oryzae for protection of rice[J]. Journal of Agricultural and Food Chemistry, 2024, 72(9): 4622 − 4629. doi:  10.1021/acs.jafc.3c07491
[5]

AHAMMAD I, JAMAL T B, LAMISA A B, et al. Subtractive genomics study of Xanthomonas oryzae pv. oryzae reveals repurposable drug candidate for the treatment of bacterial leaf blight in rice[J]. Journal of Genetic Engineering and Biotechnology, 2024, 22(1): 100353. doi:  10.1016/j.jgeb.2024.100353
[6]

JAITHON T, ATICHAKARO T, PHONPHOEM W, et al. Potential usage of biosynthesized zinc oxide nanoparticles from mangosteen peel ethanol extract to inhibit Xanthomonas oryzae and promote rice growth[J]. Heliyon, 2024, 10(1): e24076. doi:  10.1016/j.heliyon.2024.e24076
[7]

YANG Z X, ZHU Z, GUO Y L, et al. OsMKK1 is a novel element that positively regulates the Xa21-mediated resistance response to Xanthomonas oryzae pv. oryzae in rice[J]. Plant Cell Reports, 2024, 43(2): 31. doi:  10.1007/s00299-023-03085-8
[8]

TAYI L, NATHAWAT R, KUMAR S, et al. Mutational analysis of predicted active site residues of an exoglucanase secreted by Xanthomonas oryzae pv. oryzae to determine their role in catalysis and in virulence on rice[J]. Enzyme and Microbial Technology, 2024, 174: 110372. doi:  10.1016/j.enzmictec.2023.110372
[9] 徐荣旗. 野油菜黄单胞菌野油菜致病变种新的依赖于Ⅲ型分泌系统的效应物的鉴定[D]. 南宁: 广西大学, 2006.
[10] 姜珊. 黄单胞菌Ⅲ型分泌系统抑制剂的筛选及其作用机制研究[D]. 广州: 华南农业大学, 2020. doi:  10.27152/d.cnki.ghanu.2020.000324.
[11] 刘红霞. 三种Ⅲ型蛋白影响黄单胞菌—水稻互作与植物抗病性研究[D]. 南京: 南京农业大学, 2006.
[12] 易杰祥, 景晓辉, 吴伦英. 黄单胞菌Ⅲ型分泌系统效应蛋白的研究进展[J]. 热带农业科学, 2014, 34(8): 74 − 79. doi:  10.3969/j.issn.1009-2196.2014.08.015
[13]

KIM J G, TAYLOR K W, HOTSON A, et al. XopD SUMO protease affects host transcription, promotes pathogen growth, and delays symptom development in xanthomonas-infected tomato leaves[J]. The Plant Cell, 2008, 20(7): 1915 − 1929. doi:  10.1105/tpc.108.058529
[14]

ORTMANN S, MARX J, LAMPE C, et al. A conserved microtubule-binding region in Xanthomonas XopL is indispensable for induced plant cell death reactions[J]. PLoS Pathogens, 2023, 19(8): e1011263. doi:  10.1371/journal.ppat.1011263
[15]

MA W X, XU X M, CAI L L, et al. A Xanthomonas oryzae type Ⅲ effector XopL causes cell death through mediating ferredoxin degradation in Nicotiana benthamiana[J]. Phytopathology Research, 2020, 2(1): 16. doi:  10.1186/s42483-020-00055-w
[16]

DEB S, GOKULAN C G, NATHAWAT R, et al. Suppression of XopQ-XopX-induced immune responses of rice by the type Ⅲ effector XopG[J]. Molecular Plant Pathology, 2022, 23(5): 634 − 648. doi:  10.1111/mpp.13184
[17]

DEB S, GUPTA M K, PATEL H K, et al. Xanthomonas oryzae pv. oryzae XopQ protein suppresses rice immune responses through interaction with two 14-3-3 proteins but its phospho-null mutant induces rice immune responses and interacts with another 14-3-3 protein[J]. Molecular Plant Pathology, 2019, 20(7): 976 − 989. doi:  10.1111/mpp.12807
[18]

DEB S, GHOSH P, PATEL H K, et al. Interaction of the Xanthomonas effectors XopQ and XopX results in induction of rice immune responses[J]. The Plant Journal, 2020, 104(2): 332 − 350. doi:  10.1111/tpj.14924
[19]

STORK W, KIM J G, MUDGETT M B. Functional analysis of plant defense suppression and activation by the Xanthomonas core type Ⅲ effector XopX[J]. Molecular Plant-Microbe Interactions, 2015, 28(2): 180 − 194. doi:  10.1094/MPMI-09-14-0263-R
[20]

PRAUTSCH J, LEE ERICKSON J L, ÖZYÜREK S, et al. Effector XopQ-induced stromule formation in Nicotiana benthamiana depends on ETI signaling components ADR1 and NRG1[J]. Plant Physiology, 2023, 191(1): 161 − 176. doi:  10.1093/plphys/kiac481
[21]

SCHÄFER A, TAUCH A, JÄGER W, et al. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum[J]. Gene, 1994, 145(1): 69 − 73. doi:  10.1016/0378-1119(94)90324-7
[22]

HUYNH T V, DAHLBECK D, STASKAWICZ B J. Bacterial blight of soybean: regulation of a pathogen gene determining host cultivar specificity[J]. Science, 1989, 245(4924): 1374 − 1377. doi:  10.1126/science.2781284
[23]

STAVRINIDES J, MCCANN H C, GUTTMAN D S. Host-pathogen interplay and the evolution of bacterial effectors[J]. Cellular Microbiology, 2008, 10(2): 285 − 292. doi:  10.1111/j.1462-5822.2007.01078.x
[24] 李开怀, 刘凤权. 植物病原细菌基因敲除技术在本科开放实验中的设计与实践[J]. 科教导刊, 2024(1): 67 − 69. doi:  10.16400/j.cnki.kjdk.2024.1.022
[25] 严霞. 野油菜黄单胞菌8004效应蛋白在调节植物先天免疫中的功能研究[D]. 海口: 海南大学, 2016.
[26] 于浩泉. 水稻黄单胞菌新型植物致病相关因子的发掘及作用机制探究[D]. 武汉: 华中农业大学, 2015. doi: 10.27158/d.cnki.ghznu.2015.000184.
[27] 景晓辉. 野油菜黄单胞菌效应蛋白XopDxcc8004与NAC转录因子ATAF2互作干扰寄主植物的免疫反应[D]. 海口: 海南大学, 2014.
[28] 米多. 水稻白叶枯病原菌Xoo中RaxM与MutL互作对raxX表达调控的影响[D]. 海口: 海南大学, 2022.
[29] 冯锋. 黄单胞菌效应蛋白AvrAC调节植物先天免疫的分子机制[D]. 北京: 清华大学, 2012.
[30] JOSEPH C A. 水稻基于产量的抗旱、耐冷和白叶枯病抗性遗传重叠的数量解析[D]. 北京: 中国农业科学院, 2015.
[31] 于燕燕, 夏影影, 吴可建, 等. XppI调控水稻白叶枯病菌致病力的潜在机制[J]. 热带生物学报, 2023, 14(6): 642 − 650. doi:  10.15886/j.cnki.rdswxb.20230024
[32] 马超越, 彭世清, 郭冬, 等. 植物原生质体分离及其瞬时转化的应用[J]. 热带生物学报, 2024, 15(2): 241 − 250. doi:  10.15886/j.cnki.rdswxb.20230026
[33] 李悦, 宋慧云, 王志, 等. 植物原生质体分离与瞬时表达体系研究进展[J]. 植物生理学报, 2023, 59(1): 21 − 32. doi:  10.13592/j.cnki.ppj.300049
[34] 李婧瑶, 刘龙飚, 丁兵, 等. 植物原生质体分离及培养研究进展[J]. 分子植物育种, 2023, 21(2): 620 − 632. doi:  10.13271/j.mpb.021.000620
[35] 郭圣婷. NbRAF2互作蛋白筛选及功能分析[D]. 沈阳: 沈阳农业大学, 2023. doi:  10.27327/d.cnki.gshnu.2023.001338.
[36]

FENSELAU S. Sequence and expression analysis of the hrpB Pathogenicity operon of Xanthomonas campestris pv. vesicatoria which encodes eight proteins with similarity to components of the hrp, ysc, spa, and fli secretion systems[J]. Molecular Plant-Microbe Interactions, 1995, 8(6): 845−854. doi: 10.1094/mpmi-8-0845 (查阅网上资料,未能确认斜体是否正确,请确认)