[1] 廖海丽, 刘剑镔, 梁毅, 等. 水稻类病斑突变体及其发生机制研究进展 [J]. 杂交水稻, 2024, 39(5): 1−12.
[2] 沈旺鑫, 史小品, 杜海波, 等. 水稻类病斑突变体基因克隆及发生机制研究进展[J]. 江苏农业学报, 2022, 38(3): 837 − 848. doi:  10.3969/j.issn.1000-4440.2022.03.032
[3] 林祯芃, 曾维, 郭铧艳, 等. 水稻类病斑相关基因的克隆及调控机制研究进展[J/OL]. 分子植物育种, (2022-10-17)[2025-01-20]https://kns.cnki.net/kcms/detail/46.1068.S.20221014.1637.014.html.
[4]

FEKIH R, TAMIRU M, KANZAKI H, et al. The rice (Oryza sativa l.) lesion mimic resembling, which encodes an aaa-type ATPase, is implicated in defense response[J]. Molecular Genetics and Genomics, 2015, 290(2): 611 − 622. doi:  10.1007/s00438-014-0944-z
[5]

XU X, CHEN Z, SHI Y F, et al. Functional inactivation of OsGCNT induces enhanced disease resistance to Xanthomonas oryzae pv. oryzae in rice[J]. BMC Plant Biology, 2018, 18(1): 264. doi:  10.1186/s12870-018-1489-9
[6]

BAI W, WANG P, HONG J, et al. Earlier degraded Tapetum1 (EDT1) encodes an ATP-citrate lyase required for tapetum programmed cell death[J]. Plant Physiology, 2019, 181(3): 1223 − 1238. doi:  10.1104/pp.19.00202
[7]

MORI M, TOMITA C, SUGIMOTO K, et al. Isolation and molecular characterization of a Spotted leaf 18 mutant by modified activation-tagging in rice[J]. Plant Molecular Biology, 2007, 63(6): 847 − 860. doi:  10.1007/s11103-006-9130-y
[8]

TANG J, ZHU X, WANG Y, et al. Semi-dominant mutations in the CC-NB-LRR-type R gene, NLS1 lead to constitutive activation of defense responses in rice[J]. The Plant Journal, 2011, 66(6): 996 − 1007. doi:  10.1111/j.1365-313X.2011.04557.x
[9]

ZHAO X, QIU T, FENG H, et al. A novel Glycine-rich domain protein, GRDP1, functions as a critical feedback regulator for controlling cell death and disease resistance in rice[J]. Journal of Experimental Botany, 2021, 72(2): 608 − 622. doi:  10.1093/jxb/eraa450
[10]

SHANG H, LI P, ZHANG X, et al. The gain-of-function mutation, OsSpl26, positively regulates plant immunity in rice[J]. International Journal of Molecular Sciences, 2022, 23(22): 14168. doi:  10.3390/ijms232214168
[11]

CAI L, YAN M, YUN H, et al. Identification and fine mapping of lesion mimic mutant spl36 in rice (Oryza sativa L.)[J]. Breeding Science, 2021, 71(5): 510 − 519. doi:  10.1270/jsbbs.20160
[12]

KANG S G, LEE K E, SINGH M, et al. Rice lesion mimic mutants (LMM): the current understanding of genetic mutations in the failure of ROS scavenging during lesion formation[J]. Plants, 2021, 10(8): 1598. doi:  10.3390/plants10081598
[13] 张刚, 朱林, 聂豪杰, 等. 基于文献计量学BSA在作物育种领域的应用现状与展望[J]. 遗传, 2024, 46(5): 360 − 372.
[14] 林秋云, 王克喜, 胡伟, 等. 水稻矮秆多分蘖突变体st1的表型特征与遗传分析[J]. 江苏农业科学, 2024, 52(12): 75 − 79.
[15]

ABE A, KOSUGI S, YOSHIDA K, et al. Genome sequencing reveals agronomically important loci in rice using MutMap[J]. Nature Biotechnology, 2012, 30(2): 174 − 178. doi:  10.1038/nbt.2095
[16] 张艳萍, 叶春雷, 齐燕妮, 等. 基于BSA-Seq定位胡麻耐盐相关基因位点[J]. 北方园艺, 2025(3): 27 − 34. doi:  10.11937/bfyy.20242807
[17] 陈丽, 孙建昌, 王昕. 基于BSA-seq法的水稻稻瘟病抗性基因定位[J]. 中国稻米, 2024, 30(6): 35 − 41. doi:  10.3969/j.issn.1006-8082.2024.06.006
[18] 魏荣华, 尹明, 王文生, 等. 基于BSA-seq发掘水稻抽穗期相关QTLs及候选基因[J]. 中国农业科技导报, 2024, 26(9): 12 − 24.
[19] 杜灿灿, 曾生元, 景德道, 等. 基于BSA-seq的一个苗期黄化转绿突变体基因定位[J]. 江苏农业科学, 2024, 52(12): 53 − 60.
[20] 徐乾坤. 水稻类病斑基因LML11的图位克隆与功能分析 [D]. 重庆: 西南大学, 2021.
[21]

MANOSALVA P M, BRUCE M, LEACH J E. Rice 14-3-3 protein (GF14e) negatively affects cell death and disease resistance[J]. The Plant Journal, 2011, 68(5): 777 − 787. doi:  10.1111/j.1365-313X.2011.04728.x
[22] 孙天宇. 大豆开花期相关数量性状位点(QTL)的定位[D]. 北京: 中国科学院大学(中国科学院东北地理与农业生态研究所), 2017.
[23] 夏赛赛, 崔玉, 李凤菲, 等. 水稻类病斑早衰突变体lmps1的表型鉴定与基因定位[J]. 作物学报, 2018, 45(1): 46 − 54.
[24]

QIAO Y, JIANG W, LEE J, et al. SPL28 encodes a clathrin-associated adaptor protein complex 1, medium subunit μ1 (AP1M1) and is responsible for spotted leaf and early senescence in rice (oryza sativa)[J]. New Phytologist, 2010, 185(1): 258 − 274. doi:  10.1111/j.1469-8137.2009.03047.x
[25]

WANG Z, WANG Y, HONG X, et al. Functional inactivation of UDP-N-acetylglucosamine pyrophosphorylase 1 (UAP1) induces early leaf senescence and defence responses in rice[J]. Journal of Experimental Botany, 2015, 66(3): 973 − 987. doi:  10.1093/jxb/eru456
[26]

WANG S, LEI C, WANG J, et al. SPL33, encoding an eEF1A-like protein, negatively regulates cell death and defense responses in rice[J]. Journal of Experimental Botany, 2017, 68(5): 899 − 913. doi:  10.1093/jxb/erx001
[27]

TAKAHASHI A, KAWASAKI T, HENMI K, et al. Lesion mimic mutants of rice with alterations in early signaling events of defense[J]. The Plant Journal: for Cell and Molecular Biology, 1999, 17(5): 535 − 545. doi:  10.1046/j.1365-313X.1999.00405.x
[28]

YIN W, ZHONG Q, ZHU Z, et al. LMI1 a DUF292 protein family gene, regulates immune responses and cell death in rice[J]. The Crop Journal, 2024, 12(6): 1619 − 1632. doi:  10.1016/j.cj.2024.07.015
[29]

ZHOU Q, ZHANG Z, LIU T, et al. Identification and map-based cloning of the light-induced lesion mimic mutant 1 (LIL1) gene in rice[J]. Frontiers in Plant Science, 2017, 8: 2122. doi:  10.3389/fpls.2017.02122
[30]

TANG Y, LI M, CHEN Y, et al. Knockdown of OsPAO and OsRCCR1 cause different plant death phenotypes in rice[J]. Journal of Plant Physiology, 2011, 168(16): 1952 − 1959. doi:  10.1016/j.jplph.2011.05.026
[31]

NOMAN M, AYSHA J, KETEHOULI T, et al. Calmodulin binding transcription activators: an interplay between calcium signalling and plant stress tolerance[J]. Journal of Plant Physiology, 2021, 256: 153327. doi:  10.1016/j.jplph.2020.153327
[32] 万凌琳. 水稻β-1, 3葡聚糖苷酶基因Osg1的功能研究 [D]. 武汉: 武汉大学, 2010.
[33]

ZHU T, WU X, YUAN G, et al. A resurfaced sensor NLR confers new recognition specificity to non-MAX effectors[J]. Journal of Integrative Plant Biology, 2025, 67(1): 11 − 14. doi:  10.1111/jipb.13805