[1] QUESADA-OCAMPO L M, PARADA-ROJAS C H, HANSEN Z, et al. Phytophthora capsici: recent progress on fundamental biology and disease management 100 years after its description[J]. Annu Rev Phytopathol, 2023, 61: 185 − 208. doi:  10.1146/annurev-phyto-021622-103801
[2] LAMOUR K H, STAM R, JUPE J, et al. The oomycete broad-host-range pathogen Phytophthora capsici[J]. Mol Plant Pathol, 2012, 13(4): 329 − 337. doi:  10.1111/j.1364-3703.2011.00754.x
[3] WANG W, LIU X, HAN T et al. Differential potential of Phytophthora capsici resistance mechanisms to the fungicide metalaxyl in peppers[J]. Microorganisms, 2020, 8(2): 278. doi:  10.3390/microorganisms8020278
[4] 李惠霞, 刘永刚, 漆永红. 12种杀菌剂对辣椒疫霉菌的室内毒力比较[J]. 兰州: 甘肃农业大学学报, 2006(5): 63 − 66.
[5]

LI Z, VELáSQUEZ-ZAPATA V, ELMORE J M, et al. Powdery mildew effectors AVR(A1) and BEC1016 target the ER J-domain protein HvERdj3B required for immunity in barley[J]. Mol Plant Pathol, 2024, 25(5): e13463. doi:  10.1111/mpp.13463
[6]

GOH J, JEON J, LEE Y H. ER retention receptor, MoERR1 is required for fungal development and pathogenicity in the rice blast fungus, Magnaporthe oryzae[J]. Sci Rep, 2017, 7(1): 1259. doi:  10.1038/s41598-017-01237-x
[7]

YI M, CHI M H, KHANG C H, et al. The ER chaperone LHS1 is involved in asexual development and rice infection by the blast fungus Magnaporthe oryzae[J]. Plant Cell, 2009, 21(2): 681 − 695. doi:  10.1105/tpc.107.055988
[8]

MüLLER L, DE ESCAURIAZA M D, LAJOIE P, et al. Evolutionary gain of function for the ER membrane protein Sec62 from yeast to humans[J]. Mol Biol Cell, 2010, 21(5): 691 − 703. doi:  10.1091/mbc.e09-08-0730
[9]

AGARRABERES F A, DICE J F. Protein translocation across membranes[J]. Biochim Biophys Acta, 2001, 1513(1): 1 − 24. doi:  10.1016/S0304-4157(01)00005-3
[10]

MEYER H A, GRAU H, KRAFT R, et al. Mammalian Sec61 is associated with Sec62 and Sec63[J]. J Biol Chem, 2000, 275(19): 14550 − 14557. doi:  10.1074/jbc.275.19.14550
[11]

LINXWEILER M, SCHORR S, SCHäUBLE N, et al. Targeting cell migration and the endoplasmic reticulum stress response with calmodulin antagonists: a clinically tested small molecule phenocopy of Sec62 gene silencing in human tumor cells[J]. BMC Cancer, 2013, 13: 574. doi:  10.1186/1471-2407-13-574
[12]

LANG S, BENEDIX J, FEDELES S V, et al. Different effects of Sec61α, Sec62 and Sec63 depletion on transport of polypeptides into the endoplasmic reticulum of mammalian cells[J]. J Cell Sci, 2012, 125(Pt 8): 1958-1969.
[13]

LAKKARAJU A K, THANKAPPAN R, MARY C, et al. Efficient secretion of small proteins in mammalian cells relies on Sec62-dependent posttranslational translocation[J]. Mol Biol Cell, 2012, 23(14): 2712 − 2722. doi:  10.1091/mbc.e12-03-0228
[14]

ITSKANOV S, KUO K M, GUMBART J C, et al. , Stepwise gating of the Sec61 protein-conducting channel by Sec63 and Sec62[J]. Nat Struct Mol Biol, 2021, 28(2): 162 − 172. doi:  10.1038/s41594-020-00541-x
[15]

LINXWEILER M, SCHICK B, ZIMMERMANN R. Let's talk about Secs: Sec61, Sec62 and Sec63 in signal transduction, oncology and personalized medicine[J]. Signal Transduct Target Ther, 2017, 2: 17002. doi:  10.1038/sigtrans.2017.2
[16]

FUMAGALLI F, NOACK J, BERGMANN T J, et al. Corrigendum: Translocon component Sec62 acts in endoplasmic reticulum turnover during stress recovery[J]. Nat Cell Biol, 2016, 19(1): 76.
[17]

HU S, YE H, CUI Y, et al. AtSec62 is critical for plant development and is involved in ER-phagy in Arabidopsis thaliana[J]. J Integr Plant Biol, 2020, 62(2): 181 − 200. doi:  10.1111/jipb.12872
[18]

MITTERREITER M J, BOSCH F A, BRYLOK T, et al. The ER luminal C-terminus of AtSec62 is critical for male fertility and plant growth in Arabidopsis thaliana[J]. Plant J, 2020, 101(1): 5 − 17. doi:  10.1111/tpj.14483
[19]

ZHOU Z, PANG Z, LI G, et al. Endoplasmic reticulum membrane-bound MoSec62 is involved in the suppression of rice immunity and is essential for the pathogenicity of Magnaporthe oryzae[J]. Mol Plant Pathol, 2016, 17(8): 1211 − 1222. doi:  10.1111/mpp.12357
[20]

LIVAK K J, SCHMITTFEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method[J]. Methods, 2001, 25(4): 402 − 408. doi:  10.1006/meth.2001.1262
[21]

WANG Z, TYLER B M, LIU X. Protocol of Phytophthora capsici transformation using the CRISPR-Cas9 system[J]. Methods Mol Biol, 2018, 1848: 265 − 274.
[22]

QIU M, LI Y, YE W, et al. A CRISPR/Cas9-mediated in situ complementation method for Phytophthora sojae mutants[J]. Mol Plant Pathol, 2021, 22(3): 373 − 381. doi:  10.1111/mpp.13028
[23] 鲁婧文, 关小灵, 李潇, 等. CsSSK1基因调控暹罗炭疽菌胁迫应答和致病性的功能分析[J]. 热带作物学报, 2024, 45(3): 622 − 631. doi:  10.3969/j.issn.1000-2561.2024.03.020
[24]

YU G, LI W, YANG C, et al. PlAtg8-mediated autophagy regulates vegetative growth, sporangial cleavage, and pathogenesis in Peronophythora litchii[J]. Microbiol Spectr, 2024, 12(1): e0353123. doi:  10.1128/spectrum.03531-23
[25]

LV L, YANG C, ZHANG X, et al. Autophagy-related protein PlATG2 regulates the vegetative growth, sporangial cleavage, autophagosome formation, and pathogenicity of Peronophythora litchii[J]. Virulence, 2024, 15(1): 2322183. doi:  10.1080/21505594.2024.2322183
[26]

SU S, SHI Y T, CHU Y, et al. Sec62 promotes gastric cancer metastasis through mediating UPR-induced autophagy activation[J]. Cell Mol Life Sci, 2022, 79(2): 133. doi:  10.1007/s00018-022-04143-2
[27]

RIQUELME M, AGUIRRE J, BARTNICKI-GARCíA S, et al. Fungal morphogenesis, from the polarized growth of hyphae to complex reproduction and infection structures[J]. Microbiol Mol Biol Rev, 2018, 82(2): e00068 − 17.
[28]

ZHENG P, NGUYEN T A, WONG J Y, et al. Spitzenkörper assembly mechanisms reveal conserved features of fungal and metazoan polarity scaffolds[J]. Nat Commun, 2020, 11(1): 2830. doi:  10.1038/s41467-020-16712-9
[29]

RIQUELME M, REYNAGA-PEñA C G, GIERZ G, et al. What determines growth direction in fungal hyphae[J]. Fungal Genet Bio, 1998, 24(1/2): 101 − 109.
[30]

SUN F, LV B, ZHANG X, et al. The endoplasmic reticulum cargo receptor FgErv14 regulates DON production, growth and virulence in Fusarium graminearum[J]. Life (Basel), 2022, 12(6): 799.
[31]

TANG W, JIANG H, ARON O, et al. Endoplasmic reticulum-associated degradation mediated by MoHrd1 and MoDer1 is pivotal for appressorium development and pathogenicity of Magnaporthe oryzae[J]. Environ Microbiol, 2020, 22(12): 4953 − 4973. doi:  10.1111/1462-2920.15069
[32]

LóPEZ-FUENTES A J, NACHóN-GARDUñO K N, SUASTE-OLMOS F, et al. Spindle dynamics during meiotic development of the fungus podospora anserina requires the endoplasmic reticulum-shaping protein RTN1[J]. mBio, 2021, 12(5): e0161521. doi:  10.1128/mBio.01615-21
[33]

QIAN B, SU X, YE Z, et al. MoErv29 promotes apoplastic effector secretion contributing to virulence of the rice blast fungus Magnaporthe oryzae[J]. New Phytol, 2022, 233(3): 1289 − 1302. doi:  10.1111/nph.17851
[34]

MEI J, LI Z, ZHOU S, et al. Effector secretion and stability in the maize anthracnose pathogen Colletotrichum graminicola requires N-linked protein glycosylation and the ER chaperone pathway[J]. New Phytol, 2023, 240(4): 1449 − 1466. doi:  10.1111/nph.19213
[35]

MONTENEGRO A A, ALI S, SONG X, et al. UhAVR1, an HR-triggering avirulence effector of ustilago hordei, is secreted via the ER-Golgi pathway, localizes to the cytosol of barley cells during in planta-expression, and contributes to virulence rarly in infection[J]. J Fungi (Basel), 2020, 6(3): 178. doi:  10.3390/jof6030178