[1] |
LIPPI C A, MUNDIS S J, SIPPY R, et al. Trends in mosquito species distribution modeling: insights for vector surveillance and disease control[J]. Parasites & Vectors, 2023, 16(1): 302. doi: 10.1186/s13071-023-05912-z |
[2] |
CARRILLO-BUSTAMANTE P, COSTA G, LAMPE L, et al. Evolutionary modelling indicates that mosquito metabolism shapes the life-history strategies of Plasmodium parasites[J]. Nature Communications, 2023, 14(1): 8139. doi: 10.1038/s41467-023-43810-1 |
[3] |
GLEAVE K, COOK D, TAYLOR M J, et al. Filarial infection influences mosquito behaviour and fecundity[J]. Scientific Reports, 2016, 6: 36319. doi: 10.1038/srep36319 |
[4] |
KRAMBRICH J, AKABERI D, LINDAHL J F, et al. Vector competence of Swedish Culex pipiens mosquitoes for Japanese encephalitis virus[J]. Parasites & Vectors, 2024, 17(1): 220. doi: 10.1186/s13071-024-06269-7 |
[5] |
OLMO R P, TODJRO Y M H, AGUIAR E R G R, et al. Mosquito vector competence for dengue is modulated by insect-specific viruses[J]. Nature Microbiology, 2023, 8(1): 135 − 149. doi: 10.1038/s41564-022-01289-4 |
[6] |
HIGGS S, VANLANDINGHAM D. Chikungunya virus and its mosquito vectors[J]. Vector-Borne and Zoonotic Diseases, 2015, 15(4): 231 − 240. doi: 10.1089/vbz.2014.1745 |
[7] |
ATONI E, ZHAO L, HU C, et al. A dataset of distribution and diversity of mosquito-associated viruses and their mosquito vectors in China[J]. Scientific Data, 2020, 7(1): 342. doi: 10.1038/s41597-020-00687-9 |
[8] |
LI Y P, AN Q, SUN Z, et al. Distribution areas and monthly dynamic distribution changes of three Aedes species in China: Aedes aegypti, Aedes albopictus and Aedes vexans[J]. Parasites & Vectors, 2023, 16(1): 297. doi: 10.1186/s13071-023-05924-9 |
[9] |
BHUVANESWARI A, SHRIRAM A N, RAJU K H K, et al. Mosquitoes, lymphatic filariasis, and public health: a systematic review of Anopheles and Aedes surveillance strategies[J]. Pathogens, 2023, 12(12): 1406. doi: 10.3390/PATHOGENS12121406 |
[10] |
ZHONG R, LIU S L, CHEN S Q, et al. Satellite observations reveal anthropogenic pressure significantly affects the suspended particulate matter concentrations in coastal waters of Hainan Island[J]. Journal of Environmental Management, 2024, 365: 121617. doi: 10.1016/j.jenvman.2024.121617 |
[11] |
LI Y J, ZHOU G F, ZHONG S F, et al. Spatial heterogeneity and temporal dynamics of mosquito population density and community structure in Hainan Island, China[J]. Parasites & Vectors, 2020, 13(1): 444. doi: 10.1186/s13071-020-04326-5 |
[12] |
STELDER J J, MIHALCA A D, OLESEN A S, et al. Potential mosquito vector attraction to- and feeding preferences for pigs in Romanian backyard farms[J]. Frontiers in Veterinary Science, 2022, 9: 1046263. doi: 10.3389/fvets.2022.1046263 |
[13] |
GAO H, CUI C L, WANG L L, et al. Mosquito microbiota and implications for disease control[J]. Trends in Parasitology, 2020, 36(2): 98 − 111. doi: 10.1016/j.pt.2019.12.001 |
[14] |
MILANESE A, MENDE D R, PAOLI L, et al. Microbial abundance, activity and population genomic profiling with mOTUs2[J]. Nature Communications, 2019, 10(1): 1014. doi: 10.1038/s41467-019-08844-4 |
[15] |
ŞENGÜL DEMIRAK M Ş, CANPOLAT E. Plant-based bioinsecticides for mosquito control: impact on insecticide resistance and disease transmission[J]. Insects, 2022, 13(2): 162. doi: 10.3390/insects13020162 |
[16] |
ADLER B, DE LA PEÑA MOCTEZUMA A. Leptospira and leptospirosis[J]. Veterinary Microbiology, 2010, 140(3/4): 287 − 296. doi: 10.1016/j.vetmic.2009.03.012 |
[17] |
GŁOWACKA P, ŻAKOWSKA D, NAYLOR K, et al. Brucella – virulence factors, pathogenesis and treatment[J]. Polish Journal of Microbiology, 2018, 67(2): 151 − 161. doi: 10.21307/pjm-2018-029 |
[18] |
WEN Y, DU Y J, SHI X Y, et al. Clinical diagnosis and treatment of seven patients diagnosed pneumonia caused by Chlamydia abortus: a case series report[J]. Frontiers in Medicine, 2024, 11: 1406737. doi: 10.3389/fmed.2024.1406737 |
[19] |
CORSARO D, VENDITTI D. Emerging chlamydial infections[J]. Critical Reviews in Microbiology, 2004, 30(2): 75 − 106. doi: 10.1080/10408410490435106 |
[20] |
ISLAM W, ADNAN M, SHABBIR A, et al. Insect-fungal-interactions: a detailed review on entomopathogenic fungi pathogenicity to combat insect pests[J]. Microbial Pathogenesis, 2021, 159: 105122. doi: 10.1016/j.micpath.2021.105122 |
[21] |
SPANG A, CACERES E F, ETTEMA T J G. Genomic exploration of the diversity, ecology, and evolution of the archaeal domain of life[J]. Science, 2017, 357(6351): eaaf3883. doi: 10.1126/science.aaf3883 |
[22] |
ZILLIG W. Comparative biochemistry of Archaea and Bacteria[J]. Current Opinion in Genetics & Development, 1991, 1(4): 544 − 551. doi: 10.1016/S0959-437X(05)80206-0 |
[23] |
FORTERRE P. Archaea: a goldmine for molecular biologists and evolutionists[M]//FERREIRA-CERCA S. Archaea: Methods and Protocols. New York: Humana, 2022: 1-21. doi: 10.1007/978-1-0716-2445-6_1 |
[24] |
ESSER D, HOFFMANN L, PHAM T K, et al. Protein phosphorylation and its role in archaeal signal transduction[J]. FEMS Microbiology Reviews, 2016, 40(5): 625 − 647. doi: 10.1093/femsre/fuw020 |
[25] |
BROMAN E, ZILIUS M, SAMUILOVIENE A, et al. Active DNRA and denitrification in oxic hypereutrophic waters[J]. Water Research, 2021, 194: 116954. doi: 10.1016/j.watres.2021.116954 |
[26] |
WU X Q, WU L Y, LIU Y N, et al. Microbial interactions with dissolved organic matter drive carbon dynamics and community succession[J]. Frontiers in Microbiology, 2018, 9: 1234. doi: 10.3389/fmicb.2018.01234 |
[27] |
BAUMGART S, PHAN T, MCKEW G. Epidemiology and antimicrobial resistance rates for Shigella species in a resource-rich setting[J]. Pathology, 2025, 57(1): 94 − 99. doi: 10.1016/J.PATHOL.2024.07.004 |
[28] |
LI H W, ZHAO C W, YANG Y, et al. The influence of gut microbiota on the fecundity of Henosepilachna vigintioctopunctata (Coleoptera: Coccinellidae)[J]. Journal of Insect Science, 2021, 21(4): 15. doi: 10.1093/jisesa/ieab061 |
[29] |
GANESAN N, MISHRA B, FELIX L, et al. Antimicrobial peptides and small molecules targeting the cell membrane of Staphylococcus aureus[J]. Microbiology and Molecular Biology Reviews, 2023, 87(2): e0003722. doi: 10.1128/mmbr.00037-22 |
[30] |
BRANINE M, BAZZICALUPO A, BRANCO S. Biology and applications of endophytic insect-pathogenic fungi[J]. PLoS Pathogens, 2019, 15(7): e1007831. doi: 10.1371/journal.ppat.1007831 |
[31] |
LIEW W P P, MOHD-REDZWAN S. Mycotoxin: its impact on gut health and microbiota[J]. Frontiers in Cellular and Infection Microbiology, 2018, 8: 60. doi: 10.3389/fcimb.2018.00060 |
[32] |
CACERES I, KHOURY A A, KHOURY R E, et al. Aflatoxin biosynthesis and genetic regulation: a review[J]. Toxins, 2020, 12(3): 150. doi: 10.3390/toxins12030150 |
[33] |
RIVERA-PÉREZ C, CLIFTON M E, NORIEGA F G. How micronutrients influence the physiology of mosquitoes[J]. Current Opinion in Insect Science, 2017, 23: 112 − 117. doi: 10.1016/j.cois.2017.07.002 |
[34] |
DENNISON N J, JUPATANAKUL N, DIMOPOULOS G. The mosquito microbiota influences vector competence for human pathogens[J]. Current Opinion in Insect Science, 2014, 3: 6 − 13. doi: 10.1016/j.cois.2014.07.004 |
[35] |
FENG Y B, PENG Y Q, SONG X M, et al. Anopheline mosquitoes are protected against parasite infection by tryptophan catabolism in gut microbiota[J]. Nature Microbiology, 2022, 7(5): 707 − 715. doi: 10.1038/s41564-022-01099-8 |
[36] |
WU P, SUN P, NIE K X, et al. A gut commensal bacterium promotes mosquito permissiveness to arboviruses[J]. Cell Host & Microbe, 2019, 25(1): 101-112. e5. doi: 10.1016/j.chom.2018.11.004 |