[1] |
BERTHELOT K, PERUCH F, LECOMTE S. Highlights on Hevea brasiliensis (pro)hevein proteins[J]. Biochimie, 2016, 127: 258 − 270. doi: 10.1016/j.biochi.2016.06.006 |
[2] |
刘锐金, 刘东, 莫业勇. 海南省天然橡胶边境保护和产业支持政策研究田[J]. 南海学刊, 2023, 9(2): 8089. |
[3] |
郭刚, 黄华孙, 张伟算, 等. 几种橡胶新品系对白粉病的抗性初步评价[J]. 华南热带农业大学学报, 2000, 6(4): 5 − 9. |
[4] |
刘静. 橡胶树白粉病的研究进展[J]. 热带农业科技, 2010, 33(3): 1 − 5. doi: 10.3969/j.issn.1672-450X.2010.03.001 |
[5] |
LIU T, SONG T, ZHANG X, et al. Unconventionally secreted effectors of two filamentous pathogens target plant salicylate biosynthesis[J]. Nature Communications, 2014, 5: 4686. doi: 10.1038/ncomms5686 |
[6] |
JONES L, RIAZ S, MORALES-CRUZ A, et al. Adaptive genomic structural variation in the grape powdery mildew pathogen, Erysiphe necator[J]. BMC Genomics, 2014, 15(1): 1081. doi: 10.1186/1471-2164-15-1081 |
[7] |
SPANU P D, ABBOTT J C, AMSELEM J, et al. Genome expansion and gene loss in powdery mildew fungi reveal tradeoffs in extreme parasitism[J]. Science, 2010, 330(6010): 1543 − 1546. doi: 10.1126/science.1194573 |
[8] |
WICKER T, OBERHAENSLI S, PARLANGE F, et al. The wheat powdery mildew genome shows the unique evolution of an obligate biotroph[J]. Nature Genetics, 2013, 45(9): 1092 − 1096. doi: 10.1038/ng.2704 |
[9] |
PEDERSEN C, VER LOREN VAN THEMAAT E, MCGUFFIN L J, et al. Structure and evolution of barley powdery mildew effector candidates[J]. BMC Genomics, 2012, 13: 694. doi: 10.1186/1471-2164-13-694 |
[10] |
ZHANG W J, PEDERSEN C, KWAAITAAL M, et al. Interaction of barley powdery mildew effector candidate CSEP0055 with the defence protein PR17c[J]. Molecular Plant Pathology, 2012, 13(9): 1110 − 1119. doi: 10.1111/j.1364-3703.2012.00820.x |
[11] |
PLIEGO C, NOWARA D, BONCIANI G, et al. Host-induced gene silencing in barley powdery mildew reveals a class of ribonuclease-like effectors[J]. Molecular Plant-Microbe Interactions: MPMI, 2013, 26(6): 633 − 642. doi: 10.1094/MPMI-01-13-0005-R |
[12] |
AHMED A A, PEDERSEN C, SCHULTZ-LARSEN T, et al. The barley powdery mildew candidate secreted effector protein CSEP0105 inhibits the chaperone activity of a small heat shock protein[J]. Plant Physiology, 2015, 168(1): 321 − 333. doi: 10.1104/pp.15.00278 |
[13] |
LIANG P, LIU S, XU F, et al. Powdery mildews are characterized by contracted carbohydrate metabolism and diverse effectors to adapt to obligate biotrophic lifestyle[J]. Frontiers in Microbiology, 2018, 9: 3160. doi: 10.3389/fmicb.2018.03160 |
[14] |
LI X, LIU Y, HE Q, et al. A candidate secreted effector protein of rubber tree powdery mildew fungus contributes to infection by regulating plant ABA biosynthesis[J]. Frontiers in Microbiology, 2020, 11: 591387. doi: 10.3389/fmicb.2020.591387 |
[15] |
HE Q, LIU Y, LIANG P, et al. A novel chorismate mutase from Erysiphe quercicola performs dual functions of synthesizing amino acids and inhibiting plant salicylic acid synthesis[J]. Microbiological Research, 2021, 242: 126599. doi: 10.1016/j.micres.2020.126599 |
[16] |
VETUKURI R R, DUBEY M, KALYANDURG P B, et al. Spray-induced gene silencing: an innovative strategy for plant trait improvement and disease control[J]. Crop Breeding and Applied Biotechnology, 2021, 21: e387921S11. doi: 10.1590/1984-70332021v21sa24 |
[17] |
YIN W, WANG Y, CHEN T, et al. Functional evaluation of the signal peptides of secreted proteins[J]. Bio-protocol, 2018, 8(9): e2839. |
[18] |
董林朋, 殷金瑶, 赵文渊, 等. 启动子WY172和WY195在暹罗炭疽菌中的活性研究[J]. 热带生物学报, 2023, 14(5): 506 − 513. |
[19] |
聂雪纯, 李思鹏, 刘玉涵, 等. 橡胶树HbLFG2蛋白对植物免疫防卫的调控机理[J]. 热带生物学报, 2023, 14(4): 380 − 388. |
[20] |
张悦婧, 李颖, 王娟娟, 等. 不同转化条件对3种农杆菌GFP基因在本氏烟草中瞬时表达的影响[J]. 植物研究, 2022, 42(1): 121 − 129. doi: 10.7525/j.issn.1673-5102.2022.01.013 |
[21] |
KAMOUN S. Extracellular protein elicitors from Phytophthora: host-specificity and induction of resistance to bacterial and fungal phytopathogens[J]. Molecular Plant-Microbe Interactions, 1993, 6(1): 15. doi: 10.1094/MPMI-6-015 |
[22] |
BONNET P, BOURDON E, PONCHET M, et al. Acquired resistance triggered by elicitins in tobacco and other plants[J]. European Journal of Plant Pathology, 1996, 102(2): 181 − 192. doi: 10.1007/BF01877105 |
[23] |
齐雯雯, 宫晓琳, 王洋, 等. 蘸花法在植物遗传转化上的应用研究进展[J]. 现代农业科技, 2014(24): 9 − 10. doi: 10.3969/j.issn.1007-5739.2014.24.001 |
[24] |
GIETZ R D. Yeast transformation by the LiAc/SS carrier DNA/PEG method[J]. Methods in Molecular Biology, 2014, 1163: 33 − 44. |
[25] |
COUTO D, ZIPFEL C. Regulation of pattern recognition receptor signalling in plants[J]. Nature Reviews Immunology, 2016, 16(9): 537 − 552. doi: 10.1038/nri.2016.77 |
[26] |
WAN W L, FRöHLICH K, PRUITT R N, et al. Plant cell surface immune receptor complex signaling[J]. Current Opinion in Plant Biology, 2019, 50: 18 − 28. doi: 10.1016/j.pbi.2019.02.001 |
[27] |
MENARDO F, PRAZ C R, WICKER T, et al. Rapid turnover of effectors in grass powdery mildew (Blumeria graminis)[J]. BMC Evolutionary Biology, 2017, 17(1): 223. doi: 10.1186/s12862-017-1064-2 |
[28] |
ZHANG Y, YIN Z, PI L, et al. A Nicotiana benthamiana receptor-like kinase regulates Phytophthora resistance by coupling with BAK1 to enhance elicitin-triggered immunity[J]. Journal of Integrative Plant Biology, 2023, 65(6): 1553 − 1565. doi: 10.1111/jipb.13458 |
[29] |
XU Q, TANG C, WANG X, et al. An effector protein of the wheat stripe rust fungus targets chloroplasts and suppresses chloroplast function[J]. Nature Communications, 2019, 10(1): 5571. doi: 10.1038/s41467-019-13487-6 |
[30] |
ZHAO M, WANG J, JI S, et al. Candidate effector Pst_8713 impairs the plant immunity and contributes to virulence of Puccinia striiformis f. sp. tritici[J]. Frontiers in Plant Science, 2018, 9: 1294. doi: 10.3389/fpls.2018.01294 |
[31] |
JIANG C, HEI R, YANG Y, et al. An orphan protein of Fusarium graminearum modulates host immunity by mediating proteasomal degradation of TaSnRK1α[J]. Nature Communications, 2020, 11(1): 4382. doi: 10.1038/s41467-020-18240-y |
[32] |
NüHSE T S, PECK S C, HIRT H, et al. Microbial elicitors induce activation and dual phosphorylation of the Arabidopsis thaliana MAPK 6[J]. The Journal of Biological Chemistry, 2000, 275(11): 7521 − 7526. doi: 10.1074/jbc.275.11.7521 |
[33] |
LI L, LI M, YU L, et al. The FLS2-associated kinase BIK1 directly phosphorylates the NADPH oxidase RbohD to control plant immunity[J]. Cell Host & Microbe, 2014, 15(3): 329 − 338. |
[34] |
KAKU H, NISHIZAWA Y, ISHII-MINAMI N, et al. Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(29): 11086 − 11091. |
[35] |
MIYA A, ALBERT P, SHINYA T, et al. CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(49): 19613 − 19618. |
[36] |
ZHOU J M, ZHANG Y. Plant immunity: danger perception and signaling[J]. Cell, 2020, 181(5): 978 − 989. doi: 10.1016/j.cell.2020.04.028 |
[37] |
KOCH A, WASSENEGGER M. Host-induced gene silencing–mechanisms and applications[J]. New Phytologist, 2021, 231(1): 54 − 59. doi: 10.1111/nph.17364 |
[38] |
ZHU W, WEI W, WU Y, et al. BcCFEM1, a CFEM domain-containing protein with putative GPI-anchored site, is involved in pathogenicity, conidial production, and stress tolerance in Botrytis cinerea[J]. Frontiers in Microbiology, 2017, 8: 1807. doi: 10.3389/fmicb.2017.01807 |
[39] |
RUIZ-JIMÉNEZ L, POLONIO Á, VIELBA-FERNÁNDEZ A, et al. Gene mining for conserved, non-annotated proteins of Podosphaera xanthii identifies novel target candidates for controlling powdery mildews by spray-induced gene silencing[J]. Journal of Fungi, 2021, 7(9): 735. doi: 10.3390/jof7090735 |
[40] |
QIAO L, LAN C, CAPRIOTTI L, et al. Spray-induced gene silencing for disease control is dependent on the efficiency of pathogen RNA uptake[J]. Plant Biotechnology Journal, 2021, 19(9): 1756 − 1768. doi: 10.1111/pbi.13589 |
[41] |
CAO X, HAN Q, WEST J S. Spray-induced gene silencing as a potential tool to control rubber tree powdery mildew disease[J]. Physiological and Molecular Plant Pathology, 2024, 129: 102182. doi: 10.1016/j.pmpp.2023.102182 |
[42] |
HACQUARD S, KRACHER B, MAEKAWA T, et al. Mosaic genome structure of the barley powdery mildew pathogen and conservation of transcriptional programs in divergent hosts[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(24): E2219 − E2228. |
[43] |
ZHANG W J, PEDERSEN C, KWAAITAAL M, et al. Interaction of barley powdery mildew effector candidate CSEP0055 with the defence protein PR17c[J]. Molecular Plant Pathology, 2012, 13(9): 1110 − 1119. doi: 10.1111/j.1364-3703.2012.00820.x |
[44] |
GODFREY D, ZHANG Z, SAALBACH G, et al. A proteomics study of barley powdery mildew haustoria[J]. Proteomics, 2009, 9(12): 3222 − 3232. doi: 10.1002/pmic.200800645 |
[45] |
LIU T, SONG T, ZHANG X, et al. Unconventionally secreted effectors of two filamentous pathogens target plant salicylate biosynthesis[J]. Nature Communications, 2014, 5: 4686. doi: 10.1038/ncomms5686 |