[1] SCHIMEL D S, HOUSE J I, HIBBARD K A, et al. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems [J]. Nature, 2001, 414(6860): 169 − 172. doi:  10.1038/35102500
[2] 陶波, 曹明奎, 李克让, 等. 1981-2000年中国陆地净生态系统生产力空间格局及其变化[J]. 中国科学D辑:地球科学, 2006(12): 1131 − 1139.
[3]

WOODWELL G M, WHITTAKER R H. Primary production in terrestrial ecosystems [J]. American Zoologist, 1968, 8(1): 19 − 30. doi:  10.1093/icb/8.1.19
[4]

PIAO S, WANG X, WANG K, et al. Interannual variation of terrestrial carbon cycle: Issues and perspectives [J]. Global Change Biology, 2020, 26(1): 300 − 318. doi:  10.1111/gcb.14884
[5]

CORLETT R T. The impacts of droughts in tropical forests [J]. Trends in Plant Science, 2016, 21(7): 584 − 593. doi:  10.1016/j.tplants.2016.02.003
[6]

BRINCK K, FISCHER R, GROENEVELD J, et al. High resolution analysis of tropical forest fragmentation and its impact on the global carbon cycle [J]. Nature Communications, 2017, 8(1): 1 − 6. doi:  10.1038/s41467-016-0009-6
[7]

GATTI L, GLOOR M, MILLER J, et al. Drought sensitivity of Amazonian carbon balance revealed by atmospheric measurements [J]. Nature, 2014, 506(7486): 76 − 80. doi:  10.1038/nature12957
[8]

LEWIS S L, BRANDO P M, PHILLIPS O L, et al. The 2010 amazon drought [J]. Science, 2011, 331(6017): 554 − 554. doi:  10.1126/science.1200807
[9]

FENG X, PORPORATO A, RODRIGUEZ-ITURBE I. Changes in rainfall seasonality in the tropics [J]. Nature Climate Change, 2013, 3(9): 811 − 815. doi:  10.1038/nclimate1907
[10] 祁承经, 曹福祥, 徐永福. 简述热带森林对气候变化的响应[J]. 林业科学, 2010, 46(7): 136 − 139. doi:  10.11707/j.1001-7488.20100720
[11]

SALESKA S R, MILLER S D, MATROSS D M, et al. Carbon in Amazon forests: unexpected seasonal fluxes and disturbance-induced losses [J]. Science, 2003, 302(5650): 1554 − 1557. doi:  10.1126/science.1091165
[12]

PHILLIPS O L, ARAGA(~)O L E, LEWIS S L, et al. Drought sensitivity of the Amazon rainforest [J]. Science, 2009, 323(5919): 1344 − 1347. doi:  10.1126/science.1164033
[13]

BONAN G B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests [J]. Science, 2008, 320(5882): 1444 − 1449. doi:  10.1126/science.1155121
[14]

PARTON W, MORGAN J, SMITH D, et al. Impact of precipitation dynamics on net ecosystem productivity [J]. Global Change Biology, 2012, 18(3): 915 − 927. doi:  10.1111/j.1365-2486.2011.02611.x
[15]

SLOT M, WINTER K. The effects of rising temperature on the ecophysiology of tropical forest trees [M]. Tropical Tree Physiology. Springer, Cham, 2016: 385 − 412.
[16]

GROGAN P, CHAPIN III F. Initial effects of experimental warming on above-and belowground components of net ecosystem CO2 exchange in arctic tundra [J]. Oecologia, 2000, 125(4): 512 − 520. doi:  10.1007/s004420000490
[17]

WELTZIN J F, LOIK M E, SCHWINNING S, et al. Assessing the response of terrestrial ecosystems to potential changes in precipitation [J]. Bioscience, 2003, 53(10): 941 − 952. doi:  10.1641/0006-3568(2003)053[0941:ATROTE]2.0.CO;2
[18]

DE VRIES W, DU E, BRTTERBACH B K. Short and long-term impacts of nitrogen deposition on carbon sequestration by forest ecosystems [J]. Current Opinion in Environmental Sustainability, 2014, 9: 90 − 104.
[19]

FERNANDEZ M M, SARDANS J, CHEVALLIER F, et al. Global trends in carbon sinks and their relationships with CO2 and temperature [J]. Nature Climate Change, 2019, 9(1): 73 − 79. doi:  10.1038/s41558-018-0367-7
[20]

LIU L, GUDMUNDSSON L, HAUSER M, et al. Soil moisture dominates dryness stress on ecosystem production globally [J]. Nature Communications, 2020, 11(1): 1 − 9. doi:  10.1038/s41467-019-13993-7
[21] 廖立国, 谭正洪, 蒋龙, 等. 基于过程模型的泰国热带森林碳通量动态模拟解析[J]. 热带生物学报, 2021, 12(3): 279 − 288.
[22]

PENUELAS J, CIAIS P, CANADELL J G, et al. Shifting from a fertilization-dominated to a warming-dominated period [J]. Nature Ecology & Evolution, 2017, 1(10): 1438 − 1445.
[23]

LIU Z, BALLANTYNE A P, POULTER B, et al. Precipitation thresholds regulate net carbon exchange at the continental scale [J]. Nature Communications, 2018, 9(1): 3596. doi:  10.1038/s41467-018-05948-1
[24]

SUNDQVIST M K, SANDERS N J, WARDLE D A. Community and ecosystem responses to elevational gradients: processes, mechanisms, and insights for global change [J]. Annual Review of Ecology, Evolution, and Systematics, 2013, 44: 261 − 280. doi:  10.1146/annurev-ecolsys-110512-135750
[25] 巩杰, 张影, 钱彩云. 甘肃白龙江流域净生态系统生产力时空变化[J]. 生态学报, 2017, 37(15): 5121 − 5128.
[26] 刘少军, 黄彦彬, 陈汇林, 等. 海南岛植被指数季节性变化及植被覆盖分析[J]. 水土保持研究, 2007, 14(2): 86 − 88. doi:  10.3969/j.issn.1005-3409.2007.02.029
[27] 罗红霞, 戴声佩, 刘恩平, 等. 2001-2014年海南岛植被覆盖时空变化特征[J]. 水土保持研究, 2018, 25(5): 343 − 350.
[28] 侯元兆. 中国热带森林的分布、类型和特点[J]. 世界林业研究, 2003(3): 47 − 51. doi:  10.3969/j.issn.1001-4241.2003.03.010
[29] 朱华, 周虹霞. 西双版纳热带雨林与海南热带雨林的比较研究[J]. 云南植物研究, 2002(1): 1 − 13+16. doi:  10.3969/j.issn.2095-0845.2002.01.001
[30]

JUN C, BAN Y, LI S. Open access to Earth land-cover map [J]. Nature, 2014, 514(7523): 434 − 434.
[31]

ZENG J, MATSUNAGA T, TAN Z H, et al. Global terrestrial carbon fluxes of 1999–2019 estimated by upscaling eddy covariance data with a random forest [J]. Scientific Data, 2020, 7(1): 1 − 11. doi:  10.1038/s41597-019-0340-y
[32]

PENG S, DING Y, LIU W, et al. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017 [J]. Earth System Science Data, 2019, 11(4): 1931 − 1946. doi:  10.5194/essd-11-1931-2019
[33]

HOLMES E, WARD E. Applied time series analysis for fisheries and environmental sciences [M]. Seattle: Northwest Fisheries Science Center, 2020.
[34]

BALCH J K. Drought and fire change sink to source [J]. Nature, 2014, 506(7486): 41 − 42. doi:  10.1038/506041a
[35] 祁承经, 曹福祥, 曹受金. 热带森林碳汇或碳源之争[J]. 生态学报, 2010, 30(23): 6613 − 6623.
[36]

YANG Y, SAATCHI S S, XU L, et al. Post-drought decline of the Amazon carbon sink [J]. Nature Communications, 2018, 9(1): 3172. doi:  10.1038/s41467-018-05668-6
[37]

DAVIDSON E A, DE ARAUJO A C, ARTAXO P, et al. The Amazon basin in transition [J]. Nature, 2012, 481(7381): 321 − 328. doi:  10.1038/nature10717
[38]

KORNER C. The use of ‘altitude’ in ecological research [J]. Trends in Ecology & Evolution, 2007, 22(11): 569 − 574.
[39]

WU Z, KOCH G W, DIJKSTRA P, et al. Responses of ecosystem carbon cycling to climate change treatments along an elevation gradient [J]. Ecosystems, 2011, 14(7): 1066 − 1080. doi:  10.1007/s10021-011-9464-4
[40]

PIAO S, SITCH S, CIAIS P, et al. Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends [J]. Global Change Biology, 2013, 19(7): 2117 − 2132. doi:  10.1111/gcb.12187
[41]

CAVALERI M A, REED S C, SMITH W K, et al. Urgent need for warming experiments in tropical forests [J]. Global Change Biology, 2015, 21(6): 2111 − 2121. doi:  10.1111/gcb.12860
[42]

BONAL D, BURBAN B, STAHL C, et al. The response of tropical rainforests to drought—lessons from recent research and future prospects [J]. Annals of Forest Science, 2016, 73(1): 27 − 44. doi:  10.1007/s13595-015-0522-5
[43] 吴志祥, 陶忠良, 兰国玉, 等. 海南岛橡胶林生态系统碳通量及其影响因子研究[J]. 热带作物学报, 2014, 35(11): 2099 − 2108. doi:  10.3969/j.issn.1000-2561.2014.11.001
[44]

RISCH A C, FRANK D A. Effects of increased soil water availability on grassland ecosystem carbon dioxide fluxes [J]. Biogeochemistry, 2007, 86(1): 91 − 103. doi:  10.1007/s10533-007-9148-5
[45]

ZHANG Q, PHILLIPS R P, MANZONI S, et al. Changes in photosynthesis and soil moisture drive the seasonal soil respiration-temperature hysteresis relationship [J]. Agricultural and Forest Meteorology, 2018, 259: 184 − 195. doi:  10.1016/j.agrformet.2018.05.005
[46]

SULLIVAN P F, ARENS S J, CHIMNER R A, et al. Temperature and microtopography interact to control carbon cycling in a high arctic fen [J]. Ecosystems, 2008, 11(1): 61 − 76. doi:  10.1007/s10021-007-9107-y
[47]

OBERBAUER S F, TWEEDIE C E, WELKER J M, et al. Tundra CO2 fluxes in response to experimental warming across latitudinal and moisture gradients [J]. Ecological Monographs, 2007, 77(2): 221 − 238. doi:  10.1890/06-0649