[1] 邹学校, 朱凡. 辣椒的起源、进化与栽培历史[J]. 园艺学报, 2022, 49(6): 1371 − 1381.
[2] 邹学校, 马艳青, 戴雄泽, 等. 辣椒在中国的传播与产业发展[J]. 园艺学报, 2020, 47(9): 1715 − 1726.
[3] 李涛, 徐小万, 李颖, 等. 一年生辣椒(Cpsicum annuum L.)与中华辣椒(Cpsicum chinense Jacquin)DNA甲基化多样性分析[J]. 分子植物育种, 2014, 12(2): 306 − 315.
[4]

RIHAN H Z, AL-ISSAWI M, FULLER M P. Advances in physiological and molecular aspects of plant cold tolerance[J]. Journal of Plant Interactions, 2017, 12(1): 143 − 157. doi:  10.1080/17429145.2017.1308568
[5]

Steponkus P L, Uemura M, Webb M S. Membrane destabilization during freeze-induced dehydration[J]. Current Topics in Plant Physiology (USA), 1993.
[6]

ZHANG S, JIANG H, PENG S, et al. Sex-related differences in morphological, physiological, and ultrastructural responses of Populus cathayana to chilling[J]. Journal of Experimental Botany, 2011, 62(2): 675 − 686. doi:  10.1093/jxb/erq306
[7]

ROHDE P, HINCHA D K, HEYER A G. Heterosis in the freezing tolerance of crosses between two Arabidopsis thaliana accessions (Columbia‐0 and C24) that show differences in non‐acclimated and acclimated freezing tolerance[J]. The Plant Journal, 2004, 38(5): 790 − 799. doi:  10.1111/j.1365-313X.2004.02080.x
[8]

LIU Z, SONG J, MIAO W, et al. Comprehensive proteome and lysine acetylome analysis reveals the widespread involvement of acetylation in cold resistance of pepper (Capsicum annuum L.)[J]. Frontiers in Plant Science, 2021, 12: 730489. doi:  10.3389/fpls.2021.730489
[9] 邓惠如, 张素勤, 耿广东. 辣椒逆境响应基因研究现状及前景[J/OL]. 分子植物育种, 1−12[2024-04-12]. http://kns.cnki.net/kcms/detail/46.1068.S.20231108.1149.002.html.
[10] 朱晨曦, 马艳青, 张竹青. 我国辣椒耐低温弱光的研究概况[J]. 安徽农业科学, 2013, 41(15): 6581 − 6583. doi:  10.3969/j.issn.0517-6611.2013.15.001
[11]

YAO C, LI X, LI Y, et al. Overexpression of a Malus baccata MYB transcription factor gene MbMYB4 increases cold and drought tolerance in Arabidopsis thaliana[J]. International Journal of Molecular Sciences, 2022, 23(3): 1794. doi:  10.3390/ijms23031794
[12]

MA X, YU Y N, JIA J H, et al. The pepper MYB transcription factor CaMYB306 accelerates fruit coloration and negatively regulates cold resistance[J]. Scientia Horticulturae, 2022, 295: 110892. doi:  10.1016/j.scienta.2022.110892
[13]

DONG J, CAO L, ZHANG X, et al. An R2R3-MYB transcription factor RmMYB108 responds to chilling stress of Rosa multiflora and conferred cold tolerance of Arabidopsis[J]. Frontiers in Plant Science, 2021, 12: 696919. doi:  10.3389/fpls.2021.696919
[14]

SONG X, ZHU L, WANG D, et al. Molecular Regulatory Mechanism of Exogenous Hydrogen Sulfide in Alleviating Low-Temperature Stress in Pepper Seedlings[J]. International Journal of Molecular Sciences, 2023, 24(22): 16337. doi:  10.3390/ijms242216337
[15]

LI N, PU K, DING D, et al. Foliar Spraying of Glycine Betaine Alleviated Growth inhibition, photoinhibition, and oxidative stress in pepper (Capsicum annuum L.) seedlings under low temperatures combined with low light[J]. Plants, 2023, 12(13): 2563. doi:  10.3390/plants12132563
[16]

ALTAF M A, SHU H, HAO Y, et al. Melatonin affects the photosynthetic performance of pepper (Capsicum annuum L.) seedlings under cold stress[J]. Antioxidants, 2022, 11(12): 2414. doi:  10.3390/antiox11122414
[17]

ZHOU Y, MUMTAZ M A, ZHANG Y, et al. Response of anthocyanin accumulation in pepper (Capsicum annuum) fruit to light days[J]. International Journal of Molecular Sciences, 2022, 23(15): 8357. doi:  10.3390/ijms23158357
[18]

HULSE-KEMP A M, MAHESHWARI S, STOFFEL K, et al. Reference quality assembly of the 3.5-Gb genome of Capsicum annuum from a single linked-read library[J]. Horticulture Research, 2018, 5: 4. doi:  10.1038/s41438-017-0011-0
[19]

Hausmann S, Geiser J, Allen G E, et al. Intrinsically disordered regions regulate RhlE RNA helicase functions in bacteria[J]. Nucleic Acids Research, 2024, gkae511.
[20]

HIRANO Y, SATO T, MIURA A, et al. Disordered region of nuclear membrane protein Bqt4 recruits phosphatidic acid to the nuclear envelope to maintain its structural integrity[J]. Journal of Biological Chemistry, 2024, 300(7): 107430. doi:  10.1016/j.jbc.2024.107430
[21]

ZHANG H, HU Y, GU B, et al. VaMYB44 transcription factor from Chinese wild Vitis amurensis negatively regulates cold tolerance in transgenic Arabidopsis thaliana and V. vinifera[J]. Plant Cell Reports, 2022, 41(8): 1673 − 1691. doi:  10.1007/s00299-022-02883-w
[22]

PERSAK H, PITZSCHKE A. Tight interconnection and multi-level control of Arabidopsis MYB44 in MAPK cascade signalling[J]. PLoS One, 2013, 8(2): e57547. doi:  10.1371/journal.pone.0057547
[23]

KAGALE S, LINKS M G, ROZWADOWSKI K. Genome-wide analysis of ethylene-responsive element binding factor-associated amphiphilic repression motif-containing transcriptional regulators in Arabidopsis[J]. Plant Physiology, 2010, 152(3): 1109 − 1134. doi:  10.1104/pp.109.151704
[24]

JIANG C, IU B, SINGH J. Requirement of a CCGAC cis-acting element for cold induction of the BN115 gene from winter Brassica napus[J]. Plant Molecular Biology, 1996, 30: 679 − 684. doi:  10.1007/BF00049344
[25]

TON J, FLORS V, MAUCH-MANI B. The multifaceted role of ABA in disease resistance[J]. Trends in Plant Science, 2009, 14(6): 310 − 317. doi:  10.1016/j.tplants.2009.03.006
[26]

YU G H, JIANG L L, MA X F, et al. A soybean C2H2-type zinc finger gene GmZF1 enhanced cold tolerance in transgenic Arabidopsis[J]. PloS One, 2014, 9(10): e109399. doi:  10.1371/journal.pone.0109399
[27]

JIANG B, SHI Y, PENG Y, et al. Cold-induced CBF-PIF3 interaction enhances freezing tolerance by stabilizing the phyB thermosensor in Arabidopsis[J]. Molecular Plant, 2020, 13(6): 894 − 906. doi:  10.1016/j.molp.2020.04.006
[28]

FRANKLIN K A, WHITELAM G C. Light-quality regulation of freezing tolerance in Arabidopsis thaliana[J]. Nature Genetics, 2007, 39(11): 1410 − 1413. doi:  10.1038/ng.2007.3
[29]

WU R, WANG Y, WU T, et al. Functional characterisation of MdMYB44 as a negative regulator in the response to cold and salt stress in apple calli[J]. The Journal of Horticultural Science and Biotechnology, 2018, 93(4): 347 − 355. doi:  10.1080/14620316.2017.1373038
[30]

MADEBO M P, BOKHARY S U F, YOU W, et al. Melatonin improves cold storage tolerance in cucumber via CsMYB44-mediated transcriptional activation of the polyamine biosynthesis gene family[J]. Postharvest Biology and Technology, 2024, 213: 112937. doi:  10.1016/j.postharvbio.2024.112937
[31]

Qi C, Wang Q, Niu Y, et al. Characteristics of ZjCIPKs and ZjbHLH74-ZjCIPK5 regulated cold tolerance in jujube[J]. International Journal of Biological Macromolecules, 2024: 130429.