[1] 张圣平, 苗晗, 薄凯亮, 等. “十三五”我国黄瓜遗传育种研究进展[J]. 中国蔬菜, 2021(4): 16−26. https://doi.org/10.19928/j.cnki.1000-6346.2021.1015 doi:  10.19928/j.cnki.1000-6346.2021.1015
[2]

Yang F, Jiang H Y, Chang G Z, et al. Effects of rhizosphere microbial communities on cucumber fusarium wilt disease suppression [J]. Microorganisms, 2023, 11(6): 1576. https://doi.org/10.3390/microorganisms11061576 doi:  10.3390/microorganisms11061576
[3] 兰成忠, 甘林, 代玉立, 等. 黄瓜枯萎病菌拮抗菌的筛选、鉴定和防效测定[J]. 中国生物防治学报, 2023, 39(1): 184−193. https://doi.org/10.16409/j.cnki.2095-039x.2023.02.006 doi:  10.16409/j.cnki.2095-039x.2023.02.006
[4]

Wang R, An X Y, Lv Y D, et al. Trichoderma asperellum GD040 upregulates defense-related genes and reduces lesion size in Coffea canephora leaves inoculated with Colletotrichum cairnsense [J]. Biological Control, 2023, 181: 105213. https://doi.org/10.1016/J.BIOCONTROL.2023.105213 doi:  10.1016/J.BIOCONTROL.2023.105213
[5] 杨倩, 薛璐, 郭慧, 等. 植物根际促生菌防治黄瓜枯萎病的研究进展[J]. 中国瓜菜, 2022, 35(1): 1−8. https://doi.org/10.3969/j.issn.1673-2871.2022.01.001 doi:  10.3969/j.issn.1673-2871.2022.01.001
[6]

Dong O X, Ronald P C. Genetic engineering for disease resistance in plants: recent progress and future perspectives [J]. Plant Physiology, 2019, 180(1): 26−38. https://doi.org/10.1104/pp.18.01224 doi:  10.1104/pp.18.01224
[7] 吴焕振, 杨野, 崔秀明, 等. 农业生物防治技术的现状及改进策略[J]. 生物技术进展, 2024, 14(5): 697−711. https://doi.org/10.19586/j.2095-2341.2024.0104 doi:  10.19586/j.2095-2341.2024.0104
[8]

Xu S, Xie X W, Zhao Y R, et al. Whole-genome analysis of Bacillus velezensis ZF2, a biocontrol agent that protects cucumis sativus against corynespora leaf spot diseases [J]. 3 Biotech, 2020, 10(4): 186. https://doi.org/10.1007/s13205-020-2165-y doi:  10.1007/s13205-020-2165-y
[9] 石义妃, 耿佩冰, 吴皓, 等. 金黄垂直链霉菌DF06的分类鉴定及防病促生作用[J]. 中国生物防治学报, 2023, 39(2): 407−417. https://doi.org/10.16409/j.cnki.2095-039x.2023.02.011 doi:  10.16409/j.cnki.2095-039x.2023.02.011
[10]

Yang F, Jiang H Y, Ma K, et al. Genome sequencing and analysis of Bacillus velezensis VJH504 reveal biocontrol mechanism against cucumber Fusarium wilt [J]. Frontiers in Microbiology, 2023, 14: 1279695. https://doi.org/10.3389/FMICB.2023.1279695 doi:  10.3389/FMICB.2023.1279695
[11]

Wang R, Yu X L, Yin Y P, et al. Biocontrol of cucumber Fusarium wilt by Trichoderma asperellum FJ035 dependent on antagonism and spatiotemporal competition with Fusarium oxysporum [J]. Biological Control, 2023, 186: 105334. https://doi.org/10.1016/j.biocontrol.2023.105334 doi:  10.1016/j.biocontrol.2023.105334
[12]

Chen J L, Sun S Z, Miao C P, et al. Endophytic Trichoderma gamsii YIM PH30019: a promising biocontrol agent with hyperosmolar, mycoparasitism, and antagonistic activities of induced volatile organic compounds on root-rot pathogenic fungi of Panax notoginseng [J]. Journal of Ginseng Research, 2016, 40(4): 315−324. https://doi.org/10.1016/j.jgr.2015.09.006 doi:  10.1016/j.jgr.2015.09.006
[13]

Tyśkiewicz R, Nowak A, Ozimek E, et al. Trichoderma: the current status of its application in agriculture for the biocontrol of fungal phytopathogens and stimulation of plant growth [J]. International Journal of Molecular Sciences, 2022, 23(4): 2329. https://doi.org/10.3390/ijms23042329 doi:  10.3390/ijms23042329
[14]

Lv D M, Zhang WX, Meng X F, et al. A novel fusion transcription factor drives high cellulase and xylanase production on glucose in Trichoderma reesei [J]. Bioresource Technology, 2023, 370: 128520. https://doi.org/10.1016/j.biortech.2022.128520 doi:  10.1016/j.biortech.2022.128520
[15]

Zhan X, Wang R, Zhang M M, et al. Trichoderma-derived emodin competes with ExpR and ExpI of Pectobacterium carotovorum subsp. carotovorum to biocontrol bacterial soft rot [J]. Pest Management Science, 2024, 80(3): 1039−1052. https://doi.org/10.1002/ps.7835 doi:  10.1002/ps.7835
[16]

Xing M Y, Zhao J, Zhang J Y, et al. 6-Pentyl-2H-pyran-2-one from Trichoderma erinaceum is fungicidal against litchi downy blight pathogen Peronophythora litchii and preservation of litchi [J]. Journal of Agricultural and Food Chemistry, 2023, 71(49): 19488−19500. https://doi.org/10.1021/acs.jafc.3c03872 doi:  10.1021/acs.jafc.3c03872
[17]

Long W Q, Chen Y F, Wei Y Z, et al. A newly isolated Trichoderma parareesei N4-3 exhibiting a biocontrol potential for banana fusarium wilt by Hyperparasitism [J]. Frontiers in Plant Science, 2023, 14: 1289959. https://doi.org/10.3389/FPLS.2023.1289959 doi:  10.3389/FPLS.2023.1289959
[18] 陈迪, 侯巨梅, 邢梦玉, 等. 7株木霉菌对火龙果3种病原菌的拮抗作用[J]. 热带作物学报, 2020, 41(12): 2501−2506. https://doi.org/10.3969/j.issn.1000-2561.2020.12.018 doi:  10.3969/j.issn.1000-2561.2020.12.018
[19]

Wang R, Liang X, Long Z, et al. An LCI-like protein APC2 protects ginseng root from Fusarium solani infection [J]. Journal of Applied Microbiology, 2021, 130(1): 165−178. https://doi.org/10.1111/jam.14771 doi:  10.1111/jam.14771
[20] 罗汶婧, 王博瑞, 马红彬, 等. 合成菌群在促进农业可持续发展中的研究进展[J]. 微生物学报, 2025, 65(10): 4308−4325. https://doi.org/10.13343/j.cnki.wsxb.20250213 doi:  10.13343/j.cnki.wsxb.20250213
[21] 韩锦, 高明博, 王林虹, 等. 生物农药在可持续农业发展中的应用与前景[J]. 西北农业学报, 2025, 34(8): 1373−1385. https://doi.org/10.7606/j.issn.1004-1389.2025.08.001 doi:  10.7606/j.issn.1004-1389.2025.08.001
[22]

Woo S L, Hermosa R, Lorito M, et al. Trichoderma: a multipurpose, plant-beneficial microorganism for eco-sustainable agriculture [J]. Nature Reviews Microbiology, 2023, 21(5): 312−326. https://doi.org/10.1038/s41579-022-00819-5 doi:  10.1038/s41579-022-00819-5
[23]

Xue M, Wang R, Zhang C Y, et al. Screening and identification of Trichoderma strains isolated from natural habitats in China with potential agricultural applications [J]. BioMed Research International, 2021, 2021(1): 7913950. https://doi.org/10.1155/2021/7913950 doi:  10.1155/2021/7913950
[24]

Jaklitsch W M, Voglmayr H. Biodiversity of Trichoderma(Hypocreaceae)in southern europe and macaronesia [J]. Studies in Mycology, 2015, 80(1): 1−87. https://doi.org/10.1016/j.simyco.2014.11.001 doi:  10.1016/j.simyco.2014.11.001
[25] 张广志, 张新建, 陈凯, 等. 木霉属中国新记录种Trichoderma paratroviride[J]. 山东科学, 2015, 28(5): 35−40. https://doi.org/10.3976/j.issn.1002-4026.2015.05.006 doi:  10.3976/j.issn.1002-4026.2015.05.006
[26]

Wang C, Zhang W Y. Evaluating effective Trichoderma isolates for biocontrol of Rhizoctonia solani causing root rot of Vigna unguiculata [J]. Journal of Integrative Agriculture, 2019, 18(9): 2072−2079. https://doi.org/10.1016/S2095-3119(19)62593-1 doi:  10.1016/S2095-3119(19)62593-1
[27]

Chen L Q, Bóka B, Kedves O, et al. Towards the biological control of devastating forest pathogens from the genus Armillaria [J]. Forests, 2019, 10(11): 1013. https://doi.org/10.3390/f10111013 doi:  10.3390/f10111013
[28]

Guzmán-Guzmán P, Etesami H, Santoyo G. Trichoderma: a multifunctional agent in plant health and microbiome interactions [J]. BMC Microbiology, 2025, 25(1): 434. https://doi.org/10.1186/s12866-025-04158-2 doi:  10.1186/s12866-025-04158-2
[29]

Han Y J, Gao P X, Yu W G, et al. N-Terminal seven-amino-acid extension simultaneously improves the pH stability, optimal temperature, thermostability and catalytic efficiency of chitosanase CsnA [J]. Biotechnology Letters, 2018, 40(1): 83. https://doi.org/10.1007/s10529-017-2444-9 doi:  10.1007/s10529-017-2444-9
[30]

Pang Y X, Yang J J, Chen X Y, et al. An antifungal chitosanase from Bacillus subtilis SH21 [J]. Molecules, 2021, 26(7): 1863. https://doi.org/10.3390/MOLECULES26071863 doi:  10.3390/MOLECULES26071863
[31]

SONG Y S, SEO D J, JUNG W J. Characterization and antifungal activity of chitosanase produced by Pedobacter sp. PR-M6 [J]. Microbial Pathogenesis, 2019, 129: 277−283. https://doi.org/10.1016/j.micpath.2019.02.026 doi:  10.1016/j.micpath.2019.02.026