[1] 卯升丹, 许文, 刘东豪, 等. 短药蒲桃叶子的化学成分研究[J]. 云南大学学报(自然科学版), 2024, 46(4): 759 − 764. doi:  10.7540/j.ynu.20230318
[2] 侯帅. 褐背蒲桃提取物农用杀菌活性研究 [D]. 海口: 海南大学, 2021.
[3]

ZHENG A, LIN R, ZHANG D, et al. The evolution and pathogenic mechanisms of the rice sheath blight pathogen[J]. Nature Communications, 2013, 4: 1424. doi:  10.1038/ncomms2427
[4]

PÉREZ-GARCÍA A, ROMERO D, FERNÁNDEZ-ORTUÑO D, et al. The powdery mildew fungus Podosphaera fusca (synonym Podosphaera xanthii), a constant threat to cucurbits[J]. Molecular Plant Pathology, 2009, 10(2): 153 − 160. doi:  10.1111/j.1364-3703.2008.00527.x
[5]

OULKAR D P, BANERJEE K, PATIL S H, et al. Degradation kinetics and safety evaluation of buprofezin residues in grape (Vitis vinifera L.) and three different soils of India[J]. Pest Management Science, 2009, 65(2): 183 − 188. doi:  10.1002/ps.1666
[6]

VIELBA-FERNÁNDEZ A, POLONIO Á, RUIZ-JIMÉNEZ L, et al. Fungicide resistance in powdery mildew fungi[J]. Microorganisms, 2020, 8(9): 1431. doi:  10.3390/microorganisms8091431
[7] 徐继根, 张顺昌, 吴昊, 等. 草莓白粉病不同防治药剂筛选试验[J]. 浙江农业科学, 2022, 63(3): 558 − 561.
[8]

MIAO J, MU W, BI Y, et al. Heterokaryotic state of a point mutation (H249Y) in SDHB protein drives the evolution of thifluzamide resistance in Rhizoctonia solani[J]. Pest Management Science, 2021, 77(3): 1392 − 1400. doi:  10.1002/ps.6155
[9]

GAO S, XU L, ZENG R, et al. Baseline sensitivity of Rhizoctonia solani to four DMI fungicides[J]. Journal of Basic Microbiology, 2022, 62(6): 701 − 710. doi:  10.1002/jobm.202100642
[10]

YIN Y, MIAO J, SHAO W, et al. Fungicide resistance: progress in understanding mechanism, monitoring, and management[J]. Phytopathology, 2023, 113(4): 707 − 718. doi:  10.1094/PHYTO-10-22-0370-KD
[11]

VAN ZWIETEN R, BIERMAN T V, KLINKHAMER P G L, et al. Mimicking natural deterrent strategies in plants using adhesive spheres[J]. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121(21): e2321565121.
[12]

ZUBROD J P, BUNDSCHUH M, ARTS G, et al. Fungicides: an overlooked pesticide class?[J]. Environmental Science & Technology, 2019, 53(7): 3347 − 3365.
[13]

SINGH P, SINGH S, SILLANPÄÄ M E T. Pesticides in the natural environment: sources, health risks, and remediation [M]. Amsterdam: Elsevier, 2022.
[14]

AMARAL I, ANTUNES S C, REBELO D, et al. Biopesticide spinosad: Unraveling ecotoxicological effects on zebrafish, Danio rerio [J]. Environmental Toxicology and Pharmacology, 2024, 108: 104458. [LinkOut]
[15]

SAVITHARANI M, KUMAR V, MANJUNATHA T, et al. Biopesticide potential of Anisomeles indica Kuntze leaf essential oil and its nanoemulsion against bacterial blight-Xanthomonas strains[J]. Journal of Natural Pesticide Research, 2024, 8: 100075. doi:  10.1016/j.napere.2024.100075
[16]

LENGAI G M W, MUTHOMI J W, MBEGA E R. Phytochemical activity and role of botanical pesticides in pest management for sustainable agricultural crop production[J]. Scientific African, 2020, 7: e00239. doi:  10.1016/j.sciaf.2019.e00239
[17]

RIYAZ M, MATHEW P, ZUBER S M, et al. Botanical pesticides for an eco-friendly and sustainable agriculture: new challenges and prospects [M]//Sustainable Agriculture. Cham: Springer International Publishing, 2021: 69−96.
[18]

CUI G, YUAN H, HE W, et al. Synergistic effects of botanical curcumin-induced programmed cell death on the management of Spodoptera litura Fabricius with avermectin[J]. Ecotoxicology and Environmental Safety, 2022, 229: 113097. doi:  10.1016/j.ecoenv.2021.113097
[19]

KIM S, YOON J, TAK J H. Synergistic mechanism of insecticidal activity in basil and mandarin essential oils against the tobacco cutworm[J]. Journal of Pest Science, 2021, 94(4): 1119 − 1131. doi:  10.1007/s10340-021-01345-8
[20] 张立娇, 徐靖, 李贵芳, 等. 藜芦根茎提取物与化学农药混施防治麦蚜效果初探[J]. 中国植保导刊, 2023, 43(11): 86 − 88. doi:  10.3969/j.issn.1672-6820.2023.11.017
[21] 高小宽, 马光, 吕亚慈, 等. 不同农药对梨黑斑病的毒力测定及与三七提取物复配的研究[J]. 北方园艺, 2020(5): 51 − 55. doi:  10.11937/bfyy.20192140
[22]

REUVENI M. Regev™–a new potent hybrid product for the control of plant diseases: a mini review[J]. Outlooks on Pest Management, 2019, 30(1): 33 − 35. doi:  10.1564/v30_feb_08
[23] 徐重新, 张江兆, 胡晓丹, 等. 农药联合复配在农作物病虫害防治上的研究进展[J]. 江苏农业科学, 2023, 51(4): 8 − 15.
[24] 高东霞, 杨素霞, 李素英. 农作物病虫害生物防治: 减少化学农药使用的创新方法[J]. 河北农机, 2024(19): 112 − 114.
[25] 孙然锋, 侯帅, 胡展, 等. 一种褐背蒲桃提取物杀菌剂及其制备方法和应用: CN113367166[P]. 2021-5-13

1-9-10].
[26] 姜海燕, 白娜娜, 晁开瑞, 等. 内生真菌SDYS180粗提物抑菌活性与机制[J]. 福建农林大学学报(自然科学版), 2024, 53(3): 307 − 313.
[27] 王鑫雨, 高续恒, 钱乐, 等. 叶菌唑及其复配剂对河南省假禾谷镰孢菌的抑制活性及对小麦茎基腐病的室内防效[J]. 农药学学报, 2024, 26(4): 781 − 789.
[28]

CANG T, LOU Y, ZHU Y C, et al. Mixture toxicities of tetrachlorantraniliprole and tebuconazole to honey bees (Apis mellifera L.) and the potential mechanism[J]. Environment International, 2023, 172: 107764. doi:  10.1016/j.envint.2023.107764
[29]

HUANG F L, LIU M, QIN L T, et al. Toxicity interactions of azole fungicide mixtures on Chlorella pyrenoidosa[J]. Environmental Toxicology, 2023, 38(7): 1509 − 1519. doi:  10.1002/tox.23782
[30] 杜晓静, 梁浩, 钱玺丞. 博落回生物碱和茶皂素对4种蔬菜病原菌的室内联合毒力[J]. 山西农业科学, 2024, 52(3): 109 − 115. doi:  10.3969/j.issn.1002-2481.2024.03.14
[31] 贤小勇, 朱桂宁, 林珊宇, 等. 吡唑醚菌酯与苯醚甲环唑对核桃炭疽病菌的联合毒力及林间防治效果[J]. 南方农业学报, 2021, 52(6): 1633 − 1640. doi:  10.3969/j.issn.2095-1191.2021.06.023
[32] 李梦雨, 高续恒, 钱乐, 等. 己唑醇及其复配剂对河南省禾谷镰孢菌的抑制活性及对小麦赤霉病的室内防效[J]. 农药学学报, 2024, 26(3): 540 − 548.
[33] 贺闽, 尹俊杰, 冯志明, 等. 水稻稻瘟病和纹枯病抗性鉴定方法[J]. 植物学报, 2020, 55(5): 577 − 587. doi:  10.11983/CBB20100
[34] 刘启凤. 黄脉九节和中南鱼藤提取物生物活性研究[D]. 海口, 海南大学, 2022.
[35] 刘启凤, 张北京, 尹丰满, 等. 中南鱼藤枝叶提取物对植物病原真菌的抑菌活性[J]. 热带生物学报, 2022, 13(3): 227 − 234. doi:  10.3969/j.issn.1674-7054.2022.3.hnrdnydxxb202203005
[36] 中华人民共和国农业部. 农药室内生物测定试验准则. 杀菌剂. 第11部分: 防治瓜类白粉病试验 盆栽法: NY/T 1156.11—2008 [S]. 北京: 中国农业出版社, 2008.
[37] 张卜艳, 马风伟, 安建松, 等. 大葱致病菌分离鉴定及农药复配抑菌方案筛选[J]. 农药, 2024, 63(10): 765 − 770.
[38] 汪军, 徐菁, 朱宇航, 等. 几种杀菌剂对猕猴桃多主棒孢菌的毒力及田间药效测定[J]. 果树学报2024, 41(11): 1−12.
[39] 戴宝生, 吕锐玲, 张华崇, 等. 四种杀菌剂及复配组合测定亚洲镰刀菌(Fusarium asiaticum)的毒力[J]. 中南农业科技, 2024(10): 4 − 8. doi:  10.3969/j.issn.1007-273X.2024.10.002