[1] |
GHAZOUL J. Dipterocarp biology, ecology, and conservation[M]. Oxford: Oxford University Press, 2016: 2. |
[2] |
CVETKOVIĆ T, HINSINGER D D, STRIJK J S. Exploring evolution and diversity of Chinese Dipterocarpaceae using next-generation sequencing[J]. Scientific Reports, 2019, 9(1): 11639. doi: 10.1038/s41598-019-48240-y |
[3] |
中国科学院中国植物志编辑委员会. 中国植物志[M]. 北京: 科学出版社, 2004: 120. |
[4] |
肖云学, 殷霖昊, 郁文彬, 等. 迁地栽培坡垒的种群结构与幼苗更新研究[J]. 植物科学学报, 2023, 41(5): 604 − 612. doi: 10.11913/PSJ.2095-0837.22294 |
[5] |
傅立国. 中国植物红皮书–第一册: 稀有濒危植物[M]. 北京: 科学出版社, 1991. (查阅网上资料, 未找到页码信息, 请补充) |
[6] |
国家林业和草原局, 农业农村部. 国家重点保护野生植物名录[EB/OL]. 2021[2024-11-27]. https://www.gov.cn/zhengce/zhengceku/2021-09/09/content_5636409.htm. |
[7] |
LY V, NANTHAVONG K, POOMA R, et al. Hopea hainanensis[EB/OL]. The IUCN Red List of Threatened Species, 2018[2024-11-27]. https://dx.doi.org/10.2305/IUCN.UK.2018-1.RLTS.T32357A2816074.en. |
[8] |
胡玉佳. 海南岛龙脑香森林的群落特征及其类型[J]. 生态科学, 1983, 2(2): 16-24. (查阅网上资料, 未找到卷号信息, 请确认) |
[9] |
LAN Q Y, LUO Y L, MA S M, et al. Development and storage of recalcitrant seeds of Hopea hainanensis[J]. Seed Science and Technology, 2012, 40(2): 200 − 208. doi: 10.15258/sst.2012.40.2.05 |
[10] |
路兴慧, 臧润国, 丁易, 等. 极小种群野生植物坡垒的生境特征及其对幼苗多度的影响[J]. 生物多样性, 2020, 28(3): 289 − 295. doi: 10.17520/biods.2019143 |
[11] |
WANG C, MA X, REN M X, et al. Genetic diversity and population structure in the endangered tree Hopea hainanensis (Dipterocarpaceae) on Hainan Island, China[J]. PLoS One, 2020, 15(11): e0241452. doi: 10.1371/journal.pone.0241452 |
[12] |
TANG L, LONG J Q, WANG H Y, et al. Conservation genomic study of Hopea hainanensis (Dipterocarpaceae), an endangered tree with extremely small populations on Hainan Island, China[J]. Frontiers in Plant Science, 2024, 15: 1442807. doi: 10.3389/fpls.2024.1442807 |
[13] |
WANG R, LIU C N, SEGAR S T, et al. Dipterocarpoidae genomics reveal their demography and adaptations to Asian rainforests[J]. Nature Communications, 2024, 15(1): 1683. doi: 10.1038/s41467-024-45836-5 |
[14] |
TAM N M, DUY V D, DUC N M, et al. Genetic variation and outcrossing rates of the endangered tropical species Dipterocarpus dyeri[J]. Journal of Tropical Forest Science, 2019, 31(2): 259 − 267. doi: 10.26525/jtfs2019.31.2.259267 |
[15] |
张大勇. 植物生活史进化与繁殖生态学[M]. 北京: 科学出版社, 2004: 102. |
[16] |
BASKAWARE S V, DEODHAR M A. Apomixis and sexual systems in various species of Garcinia with special reference to Garcinia indica (thouars) Choisy[J]. International Journal of Fruit Science, 2023, 23(1): 25 − 33. doi: 10.1080/15538362.2023.2165596 |
[17] |
ASKER S E, JERLING L. Apomixis in plants[M]. Boca Raton: CRC, 1992. (查阅网上资料, 未找到页码信息, 请补充) |
[18] |
APPANAH S, TURNBULL J W. A review of dipterocarps: taxonomy, ecology and silviculture[M]. Bogor: Center for International Forestry Research, 1998: 48. |
[19] |
DIAS A C C, SERRA A C, SAMPAIO D S, et al. Unexpectedly high genetic diversity and divergence among populations of the apomictic Neotropical tree Miconia albicans[J]. Plant Biology, 2018, 20(2): 244 − 251. doi: 10.1111/plb.12654 |
[20] |
SAILER C, STÖCKLIN J, GROSSNIKLAUS U. Dynamics of apomictic and sexual reproduction during primary succession on a glacier forefield in the Swiss Alps[J]. Scientific Reports, 2020, 10(1): 8269. doi: 10.1038/s41598-020-64367-9 |
[21] |
XU Y, ZANG R G. Conservation of rare and endangered plant species in China[J]. iScience, 2023, 26(2): 106008. doi: 10.1016/j.isci.2023.106008 |
[22] |
KAUR A, JONG K, SANDS V E, et al. Cytoembryology of some Malaysian dipterocarps, with some evidence of apomixis[J]. Botanical Journal of the Linnean Society, 1986, 92(2): 75 − 88. doi: 10.1111/j.1095-8339.1986.tb01824.x |
[23] |
NG K K S, LEE S L, KOH C L. Spatial structure and genetic diversity of two tropical tree species with contrasting breeding systems and different ploidy levels[J]. Molecular Ecology, 2004, 13(3): 657 − 669. doi: 10.1046/j.1365-294X.2004.02094.x |
[24] |
VIGNAL A, MILAN D, SANCRISTOBAL M, et al. A review on SNP and other types of molecular markers and their use in animal genetics[J]. Genetics Selection Evolution, 2002, 34(3): 275 − 305. doi: 10.1186/1297-9686-34-3-275 |
[25] |
FREELAND J R. KIRK H, PETERSEN S D. 分子生态学[M]. 戎俊, 杨小强, 耿宇鹏, 等, 译. 2版. 北京: 高等教育出版社, 2015: 24. (查阅网上资料, 未能确认本条文献修改是否正确, 请确认) |
[26] |
AL-SAMARAI F R, AL-KAZAZ A A. Molecular markers: an introduction and applications[J]. European Journal of Molecular Biotechnology, 2015, 9(3): 118 − 130. doi: 10.13187/ejmb.2015.9.118 |
[27] |
ZHAO Y, WANG K, WANG W L, et al. A high-throughput SNP discovery strategy for RNA-seq data[J]. BMC Genomics, 2019, 20(1): 160. doi: 10.1186/s12864-019-5533-4 |
[28] |
KLEVEN O, ENDRESTØL A, EVJU M, et al. SNP discovery in the northern dragonhead Dracocephalum ruyschiana[J]. Conservation Genetics Resources, 2019, 11(4): 431 − 435. doi: 10.1007/s12686-018-1045-9 |
[29] |
CHEN Y K, ZHANG H L, ZHANG L, et al. Genetic diversity assessment of Hopea hainanensis in Hainan Island[J]. Frontiers in Plant Science, 2022, 13: 1075102. doi: 10.3389/fpls.2022.1075102 |
[30] |
SOUSA T V, CAIXETA E T, ALKIMIM E R, et al. Population structure and genetic diversity of coffee progenies derived from Catuaí and Híbrido de Timor revealed by genome-wide SNP marker[J]. Tree Genetics & Genomes, 2017, 13(6): 124. doi: 10.1007/s11295-017-1208-y |
[31] |
WANG C, MA X, TANG L. Isolation and characterization of twelve polymorphic microsatellite markers in the endangered Hopea hainanensis (Dipterocarpaceae)[J]. Ecology and Evolution, 2021, 11(1): 4 − 10. doi: 10.1002/ece3.7077 |
[32] |
PETERSON B K, WEBER J N, KAY E H, et al. Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species[J]. PLoS One, 2012, 7(5): e37135. doi: 10.1371/journal.pone.0037135 |
[33] |
ROCHETTE N C, RIVERA-COLÓN A G, CATCHEN J M. Stacks 2: analytical methods for paired-end sequencing improve RADseq-based population genomics[J]. Molecular Ecology, 2019, 28(21): 4737 − 4754. doi: 10.1111/mec.15253 |
[34] |
ROCHETTE N C, CATCHEN J M. Deriving genotypes from RAD-seq short-read data using Stacks[J]. Nature Protocols, 2017, 12(12): 2640 − 2659. doi: 10.1038/nprot.2017.123 |
[35] |
KAUSHAL P, DWIVEDI K K, RADHAKRISHNA A, et al. Partitioning apomixis components to understand and utilize gametophytic apomixis[J]. Frontiers in Plant Science, 2019, 10: 256. doi: 10.3389/fpls.2019.00256 |
[36] |
姚家玲. 龙须草无融合生殖机理研究及资源评价[D]. 武汉: 华中农业大学, 2005. |
[37] |
KAUR A, HA C O, JONG K, et al. Apomixis may be widespread among trees of the climax rain forest[J]. Nature, 1978, 271(5644): 440 − 442. doi: 10.1038/271440a0 |
[38] |
KAUR A, JONG K, SANDS V E, et al. Cytoembryology of some Malaysian dipterocarps, with some evidence of apomixis[J]. Botanical Journal of the Linnean Society, 1986, 92(2): 75 − 88.(与文献22重复 |
[39] |
SINGH A N, THAKUR A. Polyembryony in Dipterocarpus retusus[J]. Journal of Tropical Forest Science, 2004, 16(4): 475 − 476. |
[40] |
PANGSUBAN S, BAMROONGRUGSA N, KANCHANAPOOM K, et al. Facultative apomixis in Garcinia atroviridis (Clusiaceae) and effects of different pollination regimes on reproductive success[J]. Tropical Life Sciences Research, 2009, 20(2): 89 − 108. |
[41] |
MAJESKÝ Ľ, VAŠUT R J, KITNER M. Genotypic diversity of apomictic microspecies of the Taraxacum scanicum group (Taraxacum sect. Erythrosperma)[J]. Plant Systematics and Evolution, 2015, 301(8): 2105 − 2124. doi: 10.1007/s00606-015-1218-x |
[42] |
YU F Y, XU W J, XIAO Y E, et al. Identifying apomixis in matroclinal progeny from an interspecific crossing between Iris domestica and three different colors of Iris dichotoma[J]. Euphytica, 2017, 213(12): 273. doi: 10.1007/s10681-017-2065-3 |
[43] |
KOLTUNOW A M, GROSSNIKLAUS U. Apomixis: a developmental perspective[J]. Annual Review of Plant Biology, 2003, 54: 547 − 574. doi: 10.1146/annurev.arplant.54.110901.160842 |
[44] |
HÖRANDL E, PAUN O. Patterns and sources of genetic diversity in apomictic plants: implications for evolutionary potentials[M]//HÖRANDL E, GROSSNIKLAUS U, VAN DIJK P, et al. Apomixis: evolution, mechanisms and perspectives. Liechtenstein: ARG-Gantner Ruggell, 2007: 169 − 174. |
[45] |
刘超男. 龙脑香亚科适应热带冠层的分子基础与海南岛坡垒的种群历史动态[D]. 上海: 华东师范大学, 2022. |
[46] |
SOWA S, KULIK M, KOROLUK A, et al. Genetic structure of Carlina acanthifolia subsp. utzka populations on the north-western margins of the species range[J]. Global Ecology and Conservation, 2020, 24: e01225. doi: 10.1016/j.gecco.2020.e01225 |