| [1] | Ghazoul J. Dipterocarp biology, ecology, and conservation[M]. Oxford: Oxford University Press, 2016: 2. |
| [2] | Cvetković T, Hinsinger D D, Strijk J S. Exploring evolution and diversity of Chinese Dipterocarpaceae using next-generation sequencing [J]. Scientific Reports, 2019, 9(1): 11639. https://doi.org/10.1038/s41598-019-48240-y doi: 10.1038/s41598-019-48240-y |
| [3] | 中国科学院中国植物志编辑委员会. 中国植物志[M]. 北京: 科学出版社, 2004: 120. |
| [4] | 肖云学, 殷霖昊, 郁文彬, 等. 迁地栽培坡垒的种群结构与幼苗更新研究[J]. 植物科学学报, 2023, 41(5): 604−612. https://doi.org/10.11913/PSJ.2095-0837.22294 doi: 10.11913/PSJ.2095-0837.22294 |
| [5] | 傅立国. 中国植物红皮书–第一册: 稀有濒危植物[M]. 北京: 科学出版社, 1991. |
| [6] | 国家林业和草原局, 农业农村部. 国家重点保护野生植物名录[EB/OL]. 2021[2024-11-27]. https://www.gov.cn/zhengce/zhengceku/2021-09/09/content_5636409.htm. |
| [7] | Ly V, Nanthavong K, Pooma R, et al. Hopea hainanensis[EB/OL]. The IUCN Red List of Threatened Species, 2018[2024-11-27]. https://dx.doi.org/10.2305/IUCN.UK.2018-1.RLTS.T32357A2816074.en. |
| [8] | 胡玉佳. 海南岛龙脑香森林的群落特征及其类型[J]. 生态科学, 1983, 2: 16−24. |
| [9] | Lan Q Y, Luo Y L, Ma S M, et al. Development and storage of recalcitrant seeds of Hopea hainanensis [J]. Seed Science and Technology, 2012, 40(2): 200−208. https://doi.org/10.15258/sst.2012.40.2.05 doi: 10.15258/sst.2012.40.2.05 |
| [10] | 路兴慧, 臧润国, 丁易, 等. 极小种群野生植物坡垒的生境特征及其对幼苗多度的影响[J]. 生物多样性, 2020, 28(3): 289−295. https://doi.org/10.17520/biods.2019143 doi: 10.17520/biods.2019143 |
| [11] | Wang C, Ma X, Ren M X, et al. Genetic diversity and population structure in the endangered tree Hopea hainanensis (Dipterocarpaceae) on Hainan Island, China [J]. PLoS One, 2020, 15(11): e0241452. https://doi.org/10.1371/journal.pone.0241452 doi: 10.1371/journal.pone.0241452 |
| [12] | Tang L, Long J Q, Wang H Y, et al. Conservation genomic study of Hopea hainanensis (Dipterocarpaceae), an endangered tree with extremely small populations on Hainan Island, China [J]. Frontiers in Plant Science, 2024, 15: 1442807. https://doi.org/10.3389/fpls.2024.1442807 doi: 10.3389/fpls.2024.1442807 |
| [13] | Wang R, Liu C N, Segar S T, et al. Dipterocarpoidae genomics reveal their demography and adaptations to Asian rainforests [J]. Nature Communications, 2024, 15(1): 1683. https://doi.org/10.1038/s41467-024-45836-5 doi: 10.1038/s41467-024-45836-5 |
| [14] | Tam N M, Duy V D, Duc N M, et al. Genetic variation and outcrossing rates of the endangered tropical species Dipterocarpus dyeri [J]. Journal of Tropical Forest Science, 2019, 31(2): 259−267. https://doi.org/10.26525/jtfs2019.31.2.259267 doi: 10.26525/jtfs2019.31.2.259267 |
| [15] | 张大勇. 植物生活史进化与繁殖生态学[M]. 北京: 科学出版社, 2004: 102. |
| [16] | Baskaware S V, Deodhar M A. Apomixis and sexual systems in various species of Garcinia with special reference to Garcinia indica (thouars) Choisy [J]. International Journal of Fruit Science, 2023, 23(1): 25−33. https://doi.org/10.1080/15538362.2023.2165596 doi: 10.1080/15538362.2023.2165596 |
| [17] | Asker S E, Jerling L. Apomixis in plants[M]. Boca Raton: CRC, 1992. |
| [18] | Appanah S, Turnbull J W. A review of dipterocarps: taxonomy, ecology and silviculture[M]. Bogor: Center for International Forestry Research, 1998: 48. |
| [19] | Dias A C C, Serra A C, Sampaio D S, et al. Unexpectedly high genetic diversity and divergence among populations of the apomictic Neotropical tree Miconia albicans [J]. Plant Biology, 2018, 20(2): 244−251. https://doi.org/10.1111/plb.12654 doi: 10.1111/plb.12654 |
| [20] | Sailer C, Stöcklin J, Grossniklaus U. Dynamics of apomictic and sexual reproduction during primary succession on a glacier forefield in the Swiss Alps [J]. Scientific Reports, 2020, 10(1): 8269. https://doi.org/10.1038/s41598-020-64367-9 doi: 10.1038/s41598-020-64367-9 |
| [21] | Xu Y, Zang R G. Conservation of rare and endangered plant species in China [J]. iScience, 2023, 26(2): 106008. https://doi.org/10.1016/j.isci.2023.106008 doi: 10.1016/j.isci.2023.106008 |
| [22] | Kaur A, Jong K, Sands V E, et al. Cytoembryology of some Malaysian dipterocarps, with some evidence of apomixis [J]. Botanical Journal of the Linnean Society, 1986, 92(2): 75−88. https://doi.org/10.1111/j.1095-8339.1986.tb01824.x doi: 10.1111/j.1095-8339.1986.tb01824.x |
| [23] | Ng K K S, Lee S L, Koh C L. Spatial structure and genetic diversity of two tropical tree species with contrasting breeding systems and different ploidy levels [J]. Molecular Ecology, 2004, 13(3): 657−669. https://doi.org/10.1046/j.1365-294X.2004.02094.x doi: 10.1046/j.1365-294X.2004.02094.x |
| [24] | Vignal A, Milan D, Sancristobal M, et al. A review on SNP and other types of molecular markers and their use in animal genetics [J]. Genetics Selection Evolution, 2002, 34(3): 275−305. https://doi.org/10.1186/1297-9686-34-3-275 doi: 10.1186/1297-9686-34-3-275 |
| [25] | Freeland J R. Kirk H, Petersen S D. 分子生态学[M]. 戎俊, 杨小强, 耿宇鹏, 等, 译. 2版. 北京: 高等教育出版社, 2015: 24. |
| [26] | Al-Samarai F R, Al-Kazaz A A. Molecular markers: an introduction and applications [J]. European Journal of Molecular Biotechnology, 2015, 9(3): 118−130. https://doi.org/10.13187/ejmb.2015.9.118 doi: 10.13187/ejmb.2015.9.118 |
| [27] | Zhao Y, Wang K, Wang W L, et al. A high-throughput SNP discovery strategy for RNA-seq data [J]. BMC Genomics, 2019, 20(1): 160. https://doi.org/10.1186/s12864-019-5533-4 doi: 10.1186/s12864-019-5533-4 |
| [28] | Kleven O, Endrestøl A, Evju M, et al. SNP discovery in the northern dragonhead Dracocephalum ruyschiana [J]. Conservation Genetics Resources, 2019, 11(4): 431−435. https://doi.org/10.1007/s12686-018-1045-9 doi: 10.1007/s12686-018-1045-9 |
| [29] | Chen Y K, Zhang H L, Zhang L, et al. Genetic diversity assessment of Hopea hainanensis in Hainan Island [J]. Frontiers in Plant Science, 2022, 13: 1075102. https://doi.org/10.3389/fpls.2022.1075102 doi: 10.3389/fpls.2022.1075102 |
| [30] | Sousa T V, Caixeta E T, Alkimim E R, et al. Population structure and genetic diversity of coffee progenies derived from Catuaí and Híbrido de Timor revealed by genome-wide SNP marker [J]. Tree Genetics & Genomes, 2017, 13(6): 124. https://doi.org/10.1007/s11295-017-1208-y doi: 10.1007/s11295-017-1208-y |
| [31] | Wang C, Ma X, Tang L. Isolation and characterization of twelve polymorphic microsatellite markers in the endangered Hopea hainanensis (Dipterocarpaceae) [J]. Ecology and Evolution, 2021, 11(1): 4−10. https://doi.org/10.1002/ece3.7077 doi: 10.1002/ece3.7077 |
| [32] | Peterson B K, Weber J N, Kay E H, et al. Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species [J]. PLoS One, 2012, 7(5): e37135. https://doi.org/10.1371/journal.pone.0037135 doi: 10.1371/journal.pone.0037135 |
| [33] | Rochette N C, Rivera-Colón A G, Catchen J M. Stacks 2: analytical methods for paired-end sequencing improve RADseq-based population genomics [J]. Molecular Ecology, 2019, 28(21): 4737−4754. https://doi.org/10.1111/mec.15253 doi: 10.1111/mec.15253 |
| [34] | Rochette N C, Catchen J M. Deriving genotypes from RAD-seq short-read data using Stacks [J]. Nature Protocols, 2017, 12(12): 2640−2659. https://doi.org/10.1038/nprot.2017.123 doi: 10.1038/nprot.2017.123 |
| [35] | Kaushal P, Dwivedi K K, Radhakrishna A, et al. Partitioning apomixis components to understand and utilize gametophytic apomixis [J]. Frontiers in Plant Science, 2019, 10: 256. https://doi.org/10.3389/fpls.2019.00256 doi: 10.3389/fpls.2019.00256 |
| [36] | 姚家玲. 龙须草无融合生殖机理研究及资源评价[D]. 武汉: 华中农业大学, 2005. |
| [37] | Kaur A, Ha C O, Jong K, et al. Apomixis may be widespread among trees of the climax rain forest [J]. Nature, 1978, 271(5644): 440−442. https://doi.org/10.1038/271440a0 doi: 10.1038/271440a0 |
| [38] | Singh A N, Thakur A. Polyembryony in Dipterocarpus retusus [J]. Journal of Tropical Forest Science, 2004, 16(4): 475−476. |
| [39] | Pangsuban S, Bamroongrugsa N, Kanchanapoom K, et al. Facultative apomixis in Garcinia atroviridis (Clusiaceae) and effects of different pollination regimes on reproductive success [J]. Tropical Life Sciences Research, 2009, 20(2): 89−108. |
| [40] | Majeský Ľ, Vašut R J, Kitner M. Genotypic diversity of apomictic microspecies of the Taraxacum scanicum group (Taraxacum sect. Erythrosperma) [J]. Plant Systematics and Evolution, 2015, 301(8): 2105−2124. https://doi.org/10.1007/s00606-015-1218-x doi: 10.1007/s00606-015-1218-x |
| [41] | Yu F Y, Xu W J, Xiao Y E, et al. Identifying apomixis in matroclinal progeny from an interspecific crossing between Iris domestica and three different colors of Iris dichotoma [J]. Euphytica, 2017, 213(12): 273. https://doi.org/10.1007/s10681-017-2065-3 doi: 10.1007/s10681-017-2065-3 |
| [42] | Koltunow A M, Grossniklaus U. Apomixis: a developmental perspective [J]. Annual Review of Plant Biology, 2003, 54: 547−574. https://doi.org/10.1146/annurev.arplant.54.110901.160842 doi: 10.1146/annurev.arplant.54.110901.160842 |
| [43] | Hörandl E, Paun O. Patterns and sources of genetic diversity in apomictic plants: implications for evolutionary potentials[M]//Hörandl E, Grossniklaus U, Van Dijk P, et al. Apomixis: evolution, mechanisms and perspectives. Liechtenstein: ARG-Gantner Ruggell, 2007: 169−174. |
| [44] | 刘超男. 龙脑香亚科适应热带冠层的分子基础与海南岛坡垒的种群历史动态[D]. 上海: 华东师范大学, 2022. |
| [45] | Sowa S, Kulik M, Koroluk A, et al. Genetic structure of Carlina acanthifolia subsp. utzka populations on the north-western margins of the species range [J]. Global Ecology and Conservation, 2020, 24: e01225. https://doi.org/10.1016/j.gecco.2020.e01225 doi: 10.1016/j.gecco.2020.e01225 |