[1] 刘涛. 南海常见大型海藻图鉴[M]. 北京: 海洋出版社, 2017: 88.
[2] 邹沐平, 董栋, 王怀玲, 等. 琼枝麒麟菜多糖抗呼吸道病毒活性研究[J]. 海洋科学, 2015, 39(12): 15 − 20. doi:  10.11759/hykx20141128001
[3] 邹沐平, 董栋, 王怀玲, 等. 琼枝麒麟菜多糖抗单纯疱疹病毒2型活性研究[J]. 中国海洋药物, 2015, 34(4): 13 − 18. doi:  10.13400/j.cnki.cjmd.2015.04.003
[4] 农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2024中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2024: 23.
[5] 童立豪, 吴翔宇, 黄良夫, 等. 光照强度与琼枝藻生长、光合色素和颜色值的相关性分析[J]. 南方水产科学, 2021, 17(5): 79 − 85. doi:  10.12131/20200256
[6] 方哲, 刘敏, 梁磊, 等. 海水相对密度对琼枝麒麟菜的生长及其卡拉胶、色素含量的影响[J]. 热带生物学报, 2012, 3(3): 204 − 207. doi:  10.15886/j.cnki.rdswxb.2012.03.018
[7] 李继伟, 杨贤庆, 潘创, 等. 琼枝麒麟菜的营养成分分析与评价[J]. 食品与发酵工业, 2020, 46(15): 265 − 269. doi:  10.13995/j.cnki.11-1802/ts.022869
[8] 李继伟, 杨贤庆, 许加超, 等. 超声波辅助酶法提取琼枝麒麟菜多糖及其理化性质研究[J]. 南方农业学报, 2020, 51(12): 3030 − 3039. doi:  10.3969/j.issn.2095-1191.2020.12.020
[9] 何伟, 罗辉, 杜思雨, 等. 三种营养类型水库和人工养殖池塘鳙鱼养成品的肌肉品质差异[J]. 渔业科学进展, 2021, 42(6): 135 − 141. doi:  10.19663/j.issn2095-9869.20200507001
[10] 孙丽慧, 林锋, 黄爱霞, 等. 拟穴青蟹雄蟹蜕壳周期肌肉与肝胰腺营养变化趋势[J]. 海洋渔业, 2019, 41(6): 694 − 703. doi:  10.3969/j.issn.1004-2490.2019.06.006
[11] 杨少玲, 戚勃, 杨贤庆, 等. 中国不同海域养殖坛紫菜营养成分差异分析[J]. 南方水产科学, 2019, 15(6): 75 − 80. doi:  10.12131/20190066
[12] 樊佳佳, 朱冰, 白俊杰, 等. 白金丰产鲫含肉率及肌肉营养成分分析[J]. 大连海洋大学学报, 2018, 33(3): 347 − 352. doi:  10.16535/j.cnki.dlhyxb.2018.03.011
[13] 钱树本. 海藻学[M]. 青岛: 中国海洋大学出版社, 2014: 244-245.
[14] 赵素芬. 海藻与海藻栽培学[M]. 北京: 国防工业出版社, 2012: 348.
[15]

LI J, QIU Y, HUANG B, et al. Effect of marine environment factors on the morphological characteristics of Betaphycus gelatinum[J]. Guangdong Agricultural Sciences, 2013, 40(13): 127-128. doi: 10.3969/j.issn.1004-874X.2013.13.039(查阅网上资料,本条文献为中文文献,请确认)
[16]

COMEAU S, CORNWALL C E, PUPIER C A, et al. Flow-driven micro-scale pH variability affects the physiology of corals and coralline algae under ocean acidification[J]. Scientific Reports, 2019, 9(1): 12829. doi:  10.1038/s41598-019-49044-w
[17]

CHEN S Y, LIN J Y. Flow resistance adaptation of aquatic macrophytes under different flow velocities[J]. Environmental Engineering Science, 2011, 28(5): 373 − 383. doi:  10.1089/ees.2010.0291
[18]

CHEN X C, YANG B Y, DU X P, et al. Rapid prediction of Porphyra photosynthetic pigments based on colorimetric parameters[J]. Frontiers in Sustainable Food Systems, 2025, 9: 1553250. doi:  10.3389/fsufs.2025.1553250
[19]

NEILAN B A, MURRAY S, CHEN M. Genomic contributions to understanding the evolution of red algal plastids and pigment biosynthesis[M]//SECKBACH J, CHAPMAN D J. Red algae in the genomic age. Dordrecht: Springer, 2010: 261-273. doi: 10.1007/978-90-481-3795-4_14
[20]

DEVLIYA B, PATEL B, PRAJAPATI A, et al. An assessment of marine natural pigments for medicinal potency[J]. Thalassas: An International Journal of Marine Sciences, 2024, 40(2): 959 − 979. doi:  10.1007/s41208-024-00707-0
[21]

LÓPEZ-HORTAS L, FLÓREZ-FERNÁNDEZ N, TORRES M D, et al. Applying seaweed compounds in cosmetics, cosmeceuticals and nutricosmetics[J]. Marine Drugs, 2021, 19(10): 552. doi:  10.3390/md19100552
[22]

LOURENÇO-LOPES C, FRAGA-CORRAL M, JIMENEZ-LOPEZ C, et al. Metabolites from macroalgae and its applications in the cosmetic industry: A circular economy approach[J]. Resources, 2020, 9(9): 101. doi:  10.3390/resources9090101
[23]

CAO X X, WANG H T, ZANG X N, et al. Changes in the photosynthetic pigment contents and transcription levels of phycoerythrin-related genes in three Gracilariopsis lemaneiformis strains under different light intensities[J]. Journal of Ocean University of China, 2021, 20(3): 661 − 668. doi:  10.1007/s11802-021-4616-4
[24]

ELSWORTH G W, LOVENDUSKI N S, MCKINNON K A, et al. Finding the fingerprint of anthropogenic climate change in marine phytoplankton abundance[J]. Current Climate Change Reports, 2020, 6(2): 37 − 46. doi:  10.1007/s40641-020-00156-w
[25]

YEH H Y, WANG W L, NAN F H, et al. Enhanced Colaconema formosanum biomass and phycoerythrin yield after manipulating inorganic carbon, irradiance, and photoperiod[J]. Bioresource Technology, 2022, 352: 127073. doi:  10.1016/j.biortech.2022.127073
[26]

RUAN B P, GAO Z Y, ZHAO J, et al. The rice YGL gene encoding an Mg2+-chelatase ChlD subunit is affected by temperature for chlorophyll biosynthesis[J]. Journal of Plant Biology, 2017, 60(4): 314 − 321. doi:  10.1007/s12374-016-0596-0
[27]

MA C, QIN S, CUI H L, et al. Nitrogen enrichment mediates the effects of high temperature on the growth, photosynthesis, and biochemical constituents of Gracilaria blodgettii and Gracilaria lemaneiformis[J]. Environmental Science and Pollution Research, 2021, 28(17): 21256 − 21265. doi:  10.1007/s11356-020-11969-5
[28]

SINGH P, CHAUBEY S, SINGH C, et al. Highly efficient perylene-based polymer photocatalyst/biocatalyst systems for L-glutamate production under solar light[J]. Bulletin of Materials Science, 2020, 43(1): 198. doi:  10.1007/s12034-020-02170-y
[29]

SMOLINA I, KOLLIAS S, JUETERBOCK A, et al. Variation in thermal stress response in two populations of the brown seaweed, Fucus distichus, from the Arctic and subarctic intertidal[J]. Royal Society Open Science, 2016, 3(1): 150429. doi:  10.1098/rsos.150429
[30]

KALE R S, SEEP J L, SALLANS L, et al. Oxidative modification of LHC II associated with photosystem II and PS I-LHC I-LHC II membranes[J]. Photosynthesis Research, 2022, 152(3): 261 − 274. doi:  10.1007/s11120-022-00902-1
[31]

THONGTHA S, KITTIWONGWATTANA C, INCHAROENSAKDI A, et al. Light-emitting diode illumination enhances biomass, pigment, and lipid production in halotolerant cyanobacterium Aphanothece halophytica[J]. Phycology, 2025, 5(2): 12. doi:  10.3390/phycology5020012
[32] 刘芳, 赵谋明, 徐建祥, 等. 不同原料卡拉胶的物性比较研究[J]. 华南理工大学学报(自然科学版), 2001, 29(5): 59 − 63. doi:  10.3321/j.issn:1000-565X.2001.05.015
[33]

CHOI W J, CHAE A N, SONG K G, et al. Effect of trophic conditions on microalga growth, nutrient removal, algal organic matter, and energy storage products in Scenedesmus (Acutodesmus) obliquus KGE-17 cultivation[J]. Bioprocess and Biosystems Engineering, 2019, 42(7): 1225 − 1234. doi:  10.1007/s00449-019-02120-x
[34]

XIE X F, HE Z L, WANG Q, et al. Diversity, composition and ecological networks of bacterial communities in response to a full cultivation cycle of the seaweed, Gracilariopsis lemaneiformis[J]. Environmental Research, 2024, 240: 117453. doi:  10.1016/j.envres.2023.117453
[35]

YE L, ZHANG L Z, CHENG J, et al. Targeted amino acid metabolomic profiling revealed light-mediated quality variations in pink Auricularia cornea[J]. Food Bioscience, 2025, 68: 106394. doi:  10.1016/j.fbio.2025.106394
[36]

CHEN B B, ZOU D H, ZHU M J, et al. Effects of CO2 levels and light intensities on growth and amino acid contents in red seaweed Gracilaria lemaneiformis[J]. Aquaculture Research, 2016, 48(6): 2683 − 2690. doi:  10.1111/are.13100
[37] 张雅莉, 蔡美琴. Β-棕榈酸(OPO结构脂肪)对婴幼儿肠道健康的促进作用[J]. 临床儿科杂志, 2015, 33(10): 918 − 920. doi:  10.3969/j.issn.1000-3606.2015.10.021
[38] 张伟敏, 钟耕, 王炜. 单不饱和脂肪酸营养及其生理功能研究概况[J]. 粮食与油脂, 2005, 18(3): 13 − 15. doi:  10.3969/j.issn.1008-9578.2005.03.004
[39] 沈雷, 唐俊, 张云霞, 等. 花生四烯酸油微胶囊配方优化及稳定性研究[J]. 中国油脂, 2016, 41(4): 14 − 18. doi:  10.3969/j.issn.1003-7969.2016.04.004
[40]

ZHANG T T, XU J, WANG Y M, et al. Health benefits of dietary marine DHA/EPA-enriched glycerophospholipids[J]. Progress in Lipid Research, 2019, 75: 100997. doi:  10.1016/j.plipres.2019.100997
[41]

THODHAL YOGANANDHAM S, RAGURAMAN V, MUNISWAMY G, et al. Mineral and trace metal concentrations in seaweeds by microwave-assisted digestion method followed by quadrupole inductively coupled plasma mass spectrometry[J]. Biological Trace Element Research, 2018, 187(2): 579 − 585. doi:  10.1007/s12011-018-1397-8
[42] 黄少军, 马留辉, 孟嗣杰, 等. 桂产肿节风无机元素分析[J]. 南方农业学报, 2022, 53(8): 2272 − 2280. doi:  10.3969/j.issn.2095-1191.2022.08.020
[43]

BONANNO G, ORLANDO-BONACA M. Chemical elements in mediterranean macroalgae. A review[J]. Ecotoxicology and Environmental Safety, 2018, 148: 44 − 71. doi:  10.1016/j.ecoenv.2017.10.013
[44]

CIRCUNCISÃO A R, CATARINO M D, CARDOSO S M, et al. Minerals from macroalgae origin: Health benefits and risks for consumers[J]. Marine Drugs, 2018, 16(11): 400. doi:  10.3390/md16110400
[45]

RUBIO C, NAPOLEONE G, LUIS-GONZÁLEZ G, et al. Metals in edible seaweed[J]. Chemosphere, 2017, 173: 572 − 579. doi:  10.1016/j.chemosphere.2017.01.064