[1] 蔡军涛. 两种肠道致病菌表面糖类抗原的全合成研究 [D]. 无锡: 江南大学, 2020.
[2]

MOHR A E, CRAWFORD M, JASBI P, et al. Lipopolysaccharide and the gut microbiota: considering structural variation[J]. FEBS Letters, 2022, 596(7): 849 − 875. doi:  10.1002/1873-3468.14328
[3]

KUO W T, ZUO L, ODENWALD M A, et al. The tight junction protein ZO-1 is dispensable for barrier function but critical for effective mucosal repair[J]. Gastroenterology, 2021, 161(6): 1924 − 1939. doi:  10.1053/j.gastro.2021.08.047
[4]

WANG Y, WEI B, WANG D, et al. DNA damage repair promotion in colonic epithelial cells by andrographolide downregulated cGAS-STING pathway activation and contributed to the relief of CPT-11-induced intestinal mucositis[J]. Acta Pharmaceutica Sinica B, 2022, 12(1): 262 − 273. doi:  10.1016/j.apsb.2021.03.043
[5] 向道春. 穿心莲内酯缓解5-氟尿嘧啶所致肠道损伤的作用和机制研究 [D]. 武汉: 华中科技大学, 2020.
[6]

LONG D. Crohn's disease and ulcerative colitis: from pathophysiology to novel therapeutic approaches[J]. Biomedicines, 2024, 12(3): 689. doi:  10.3390/biomedicines12030689
[7]

YANG K, WANG X, HUANG R, et al. Prebiotics and postbiotics synergistic delivery microcapsules from microfluidics for treating colitis[J]. Advanced Science, 2022, 9(16): 2104089. doi:  10.1002/advs.202104089
[8]

REKHA K, VENKIDASAMY B, SAMYNATHAN R, et al. Short-chain fatty acid: an updated review on signaling, metabolism, and therapeutic effects[J]. Critical Reviews in Food Science and Nutrition, 2024, 64(9): 2461 − 2489. doi:  10.1080/10408398.2022.2124231
[9]

NEY L M, WIPPLINGER M, GROSSMANN M, et al. Short chain fatty acids: key regulators of the local and systemic immune response in inflammatory diseases and infections[J]. Open Biology, 2023, 13(3): 230014. doi:  10.1098/rsob.230014
[10] 鲁春灵, 黄建奎, 冯斌, 等. 丁酸盐在仔猪肠道健康调节中的应用研究进展[J]. 中国畜牧杂志, 2023, 59(8): 41 − 45.
[11]

PENG K, XIA S, XIAO S, et al. Short-chain fatty acids affect the development of inflammatory bowel disease through intestinal barrier, immunology, and microbiota: a promising therapy?[J]. Journal of Gastroenterology and Hepatology, 2022, 37(9): 1710 − 1718. doi:  10.1111/jgh.15970
[12]

MU Y, KINASHI Y, LI J, et al. Polyvinyl butyrate nanoparticles as butyrate donors for colitis treatment[J]. ACS Applied Bio Materials, 2021, 4(3): 2335 − 2341. doi:  10.1021/acsabm.0c01105
[13]

WATHONI N, MEYLINA L, RUSDIN A, et al. The potential cytotoxic activity enhancement of α-mangostin in chitosan-kappa carrageenan-loaded nanoparticle against MCF-7 cell line[J]. Polymers, 2021, 13(11): 1681. doi:  10.3390/polym13111681
[14] 姚平, 杨伟渊, 祝震, 等. 新型透明质酸/壳聚糖交联膜制备及性能研究[J]. 浙江工业大学学报, 2024, 52(2): 217 − 221. doi:  10.3969/j.issn.1006-4303.2024.02.013
[15]

ANIL S. Potential medical applications of chitooligosaccharides[J]. Polymers, 2022, 14(17): 3558. doi:  10.3390/polym14173558
[16]

SHINN J, KWON N, LEE S A, et al. Smart pH-responsive nanomedicines for disease therapy[J]. Journal of Pharmaceutical Investigation, 2022, 52(4): 427 − 441. doi:  10.1007/s40005-022-00573-z
[17]

PULUHULAWA L E, JONI I M, ELAMIN K M, et al. Chitosan-hyaluronic acid nanoparticles for active targeting in cancer therapy[J]. Polymers, 2022, 14(16): 3410. doi:  10.3390/polym14163410
[18]

LEE Y, SUGIHARA K, GILLILLAND III M G, et al. Hyaluronic acid-bilirubin nanomedicine for targeted modulation of dysregulated intestinal barrier, microbiome and immune responses in colitis[J]. Nature Materials, 2020, 19(1): 118 − 126. doi:  10.1038/s41563-019-0462-9
[19]

KOTLA N G, ISA I L M, RASALA S, et al. Modulation of gut barrier functions in ulcerative colitis by hyaluronic acid system[J]. Advanced Science, 2022, 9(4): 2103189. doi:  10.1002/advs.202103189
[20]

POUDEL K, BANSTOLA A, GAUTAM M, et al. Redox/photo dual-responsive, self-targeted, and photosensitizer-laden bismuth sulfide nanourchins for combination therapy in cancer[J]. Nanoscale, 2021, 13(2): 1231 − 1247. doi:  10.1039/D0NR07736D
[21]

DI MOLA A, LANDI M R, MASSA A, et al. Hyaluronic acid in biomedical fields: new trends from chemistry to biomaterial applications[J]. International Journal of Molecular Sciences, 2022, 23(22): 14372. doi:  10.3390/ijms232214372
[22]

SACCO P, DECLEVA E, TENTOR F, et al. Butyrate-loaded chitosan/hyaluronan nanoparticles: a suitable tool for sustained inhibition of ROS release by activated neutrophils[J]. Macromolecular Bioscience, 2017, 17(11): 1700214. doi:  10.1002/mabi.201700214
[23] 李浙烽, 余荣, 安文敏, 等. 使用HPLC法测定丁酸和丁酸钠的方法: CN103728389 [P]. 2016−04−27.
[24]

ZHUO S, ZHANG F, YU J, et al. pH-sensitive biomaterials for drug delivery[J]. Molecules, 2020, 25(23): 5649. doi:  10.3390/molecules25235649
[25]

FARRé R, FIORANI M, ABDU RAHIMAN S, et al. Intestinal permeability, inflammation and the role of nutrients[J]. Nutrients, 2020, 12(4): 1185. doi:  10.3390/nu12041185
[26]

ZIELIŃSKA A, CARREIRÓ F, OLIVEIRA A M, et al. Polymeric nanoparticles: production, characterization, toxicology and ecotoxicology[J]. Molecules, 2020, 25(16): 3731. doi:  10.3390/molecules25163731
[27]

DROGOZ A, DAVID L, ROCHAS C, et al. Polyelectrolyte complexes from polysaccharides: formation and stoichiometry monitoring[J]. Langmuir, 2007, 23(22): 10950 − 10958. doi:  10.1021/la7008545
[28] 周超, 唐含林, 徐鹏, 等. 丁酸盐在小鼠结肠炎损伤中的缓解作用及机制研究[J]. 免疫学杂志, 2020, 36(1): 28 − 33.
[29]

VERNERO M, DE BLASIO F, RIBALDONE D G, et al. The usefulness of microencapsulated sodium butyrate add-on therapy in maintaining remission in patients with ulcerative colitis: a prospective observational study[J]. Journal of clinical medicine, 2020, 9(12): 3941. doi:  10.3390/jcm9123941
[30]

LI Y, TAN S, SHEN Y, et al. MiR-146a-5p negatively regulates the IL-1β-stimulated inflammatory response via downregulation of the IRAK1/TRAF6 signaling pathway in human intestinal epithelial cells[J]. Experimental and Therapeutic Medicine, 2022, 24(4): 1 − 9.
[31] 马玉佩. 变性白蛋白包裹氯喹纳米粒子用于治疗炎症性肠病的研究 [D]. 合肥: 合肥工业大学, 2022.
[32]

ABDELLA S, ABID F, YOUSSEF S H, et al. pH and its applications in targeted drug delivery[J]. Drug Discovery Today, 2023, 28(1): 103414. doi:  10.1016/j.drudis.2022.103414