[1] 王音, 问锦曾. 三叶草斑潜蝇发生动态及检疫[J]. 植物检疫, 1995(1): 10 − 11.
[2] 余道坚, 郑文华, 林朝森, 等. 警惕三叶斑潜蝇的侵入[J]. 中国进出境动植检, 1998(3): 40 − 42.
[3] 雷仲仁, 朱灿健, 张长青. 重大外来入侵害虫三叶斑潜蝇在中国的风险性分析[J]. 植物保护, 2007(1): 37 − 41.
[4] 汪兴鉴, 黄顶成, 李红梅, 等. 三叶草斑潜蝇的入侵、鉴定及在中国适生区分析[J]. 昆虫知识, 2006, 43(4): 540 − 545.
[5] 王凯歌, 益浩, 雷仲仁, 等. 两种外来入侵斑潜蝇在海南地区的竞争取代调查分析[J]. 中国农业科学, 2013, 46(22): 4842 − 4848.
[6] 何德良. 有害生物—三叶斑潜蝇[J]. 植物检疫, 2007(2): 120 − 122.
[7] 陈洪俊, 李镇宇, 骆有庆. 检疫性有害生物三叶斑潜蝇[J]. 植物检疫, 2005(2): 99 − 102.
[8] 吕延超, 廖道龙, 陈贻诵, 等. 海南蔬菜产业发展现状及其对策[J]. 特种经济动植物, 2020, 23(10): 44 − 47.
[9] 成善汉, 汪志伟, 朱国鹏. 海南省蔬菜产业发展现状及对策[J]. 中国蔬菜, 2019(6): 16 − 20.
[10] 王硕, 吕宝乾, 王树昌, 等. 基于防虫网+的热区豇豆病虫害生态调控策略 [J/OL]. 热带农业科学, 1 − 9[2024-03-18]. http://kns.cnki.net/kcms/detail/46.1038.S.20240301.1759.002.html.
[11]

LI F, GONG X, YUAN L, et al. Indoxacarb resistance-associated mutation of Liriomyza trifolii in Hainan, China[J]. Pesticide Biochemistry and Physiology, 2022, 183: 105054. doi:  10.1016/j.pestbp.2022.105054
[12]

LIVINGSTONE D R. Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms[J]. Marine Pollution Bulletin, 2001, 42(8): 656 − 666. doi:  10.1016/S0025-326X(01)00060-1
[13]

JIA F X, DOU W, HU F, et al. Effects of thermal stress on lipid peroxidation and antioxidant enzyme activities of oriental fruit fly, Bactrocera dorsalis(Diptera: Tephritidae)[J]. Florida Entomologist, 2011, 94(4): 956 − 963. doi:  10.1653/024.094.0432
[14]

JOANISSE D, STOREY K. Oxidative stress and antioxidants in overwintering larvae of cold-hardy goldenrod gall insects [J]. The Journal of Experimental Biology, 1996, 199(Pt 7): 1483-1491.
[15]

LANDIS G N, TOWER J. Superoxide dismutase evolution and life span regulation[J]. Mechanisms of Ageing and Development, 2005, 126(3): 365 − 379. doi:  10.1016/j.mad.2004.08.012
[16]

AN M I, CHOI C Y. Activity of antioxidant enzymes and physiological responses in ark shell, Scapharca broughtonii, exposed to thermal and osmotic stress: effects on hemolymph and biochemical parameters [J]. Comparative Biochemistry and Physiology Part B, Biochemistry & Molecular Biology, 2010, 155(1): 34-42.
[17] 冯宏祖, 刘映红, 何林, 等. 阿维菌素和温度胁迫对朱砂叶螨自由基及保护酶活性的影响[J]. 植物保护学报, 2008, 35(6): 530 − 536.
[18]

CHENG J, WANG C Y, LYU Z H, et al. Identification and characterization of the catalase gene involved in resistance to thermal stress in Heortia vitessoides using RNA interference[J]. Journal of Thermal Biology, 2018, 78: 114 − 121. doi:  10.1016/j.jtherbio.2018.09.008
[19] 李鸿波, 戴长庚, 张昌容, 等. 粘虫过氧化氢酶基因的克隆与表达分析[J]. 昆虫学报, 2018, 61(2): 178 − 187.
[20]

KHURSHID A, INAYAT R, TAMKEEN A, et al. Antioxidant enzymes and heat-shock protein genes of green peach aphid (Myzus persicae) under short-time heat stress[J]. Frontiers in Physiology, 2021, 12: 805509. doi:  10.3389/fphys.2021.805509
[21]

ZHU T, LI W, XUE H, et al. Selection, identification, and transcript expression analysis of antioxidant enzyme genes in Neoseiulus barkeri after short-term heat stress[J]. Antioxidants, 2023, 12(11): 1998. doi:  10.3390/antiox12111998
[22]

LIANG P, NING J, WANG W, et al. Catalase promotes whitefly adaptation to high temperature by eliminating reactive oxygen species[J]. Insect Science, 2023, 30(5): 1293 − 1308. doi:  10.1111/1744-7917.13157
[23]

LIU X, FU Z X, KANG Z W, et al. Identification and characterization of antioxidant enzyme genes in parasitoid Aphelinus asychis (Hymenoptera: Aphelinidae) and expression profiling analysis under temperature stress[J]. Insects, 2022, 13(5): 447. doi:  10.3390/insects13050447
[24] 龙佳芝, 郭文秀, 季敏, 等. 高温胁迫对丽蚜小蜂死亡率和保护酶系的影响[J]. 草原与草坪, 2023, 43(4): 130 − 136.
[25] 常亚文. 三叶斑潜蝇的种间竞争优势和温度耐受性的分子机制[D]. 扬州: 扬州大学, 2021.
[26]

CHANG Y W, ZHANG X X, LU M X, et al. Transcriptome analysis of Liriomyza trifolii (Diptera: Agromyzidae) in response to temperature stress [J]. Comparative Biochemistry and Physiology Part D, Genomics & Proteomics, 2020, 34: 100677.
[27]

CHANG Y W, CHEN J Y, LU M X, et al. Selection and validation of reference genes for quantitative real-time PCR analysis under different experimental conditions in the leafminer Liriomyza trifolii (Diptera: Agromyzidae)[J]. PLoS One, 2017, 12(7): e0181862. doi:  10.1371/journal.pone.0181862
[28]

LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) Method[J]. Methods, 2001, 25(4): 402 − 408. doi:  10.1006/meth.2001.1262
[29]

ZHANGB, ZHOUX, ZHOUL, et al. A global synthesis of below-ground carbon responses to biotic disturbance: a meta-analysis[J]. Global Ecology and Biogeography, 2015, 24(2): 126 − 138. doi:  10.1111/geb.12235
[30] 彭露, 万方浩, 侯有明. 中国入侵昆虫预防与控制研究进展[J]. 应用昆虫学报, 2020, 57(2): 244 − 258.
[31]

CHANG Y W, WANG Y C, ZHANG X X, et al. Transcriptional regulation of small heat shock protein genes by heat shock factor 1 (HSF1) in Liriomyza trifolii under heat stress[J]. Cell Stress & Chaperones, 2021, 26(5): 835 − 843.
[32]

CHANG Y W, ZHANG X X, LU M X, et al. Molecular cloning and characterization of small heat shock protein genes in the invasive leaf miner fly, Liriomyza trifolii[J]. Genes, 2019, 10(10): 775. doi:  10.3390/genes10100775
[33]

CHANG Y W, CHEN J Y, LU M X, et al. Cloning and expression of genes encoding heat shock proteins in Liriomyza trifolii and comparison with two congener leafminer species[J]. PLoS One, 2017, 12(7): e0181355. doi:  10.1371/journal.pone.0181355
[34]

Yeon B K , Ja H K , Sik K L , et al. Catalase from the white-spotted flower chafer, Protaetia brevitarsis: cDNA sequence, expression, and functional characterization[J]. Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology, 2008, 149(1): 183 − 190.
[35]

XU J, LU M X, HUANG D L, et al. Molecular cloning, characterization, genomic structure and functional analysis of catalase in Chilo suppressalis[J]. Journal of Asia-Pacific Entomology, 2017, 20(2): 331 − 336. doi:  10.1016/j.aspen.2016.08.006
[36]

YAMAMOTO K, BANNO Y, FUJII H, et al. Catalase from the silkworm, Bombyx mori: gene sequence, distribution, and overexpression[J]. Insect Biochemistry and Molecular Biology, 2005, 35(4): 277 − 283. doi:  10.1016/j.ibmb.2005.01.001
[37]

ZHANGX, LIY, WANGJ, et al. Identification and characteristic analysis of the catalase gene from Locusta migratoria[J]. Pesticide Biochemistry and Physiology, 2016, 132: 125 − 131. doi:  10.1016/j.pestbp.2016.03.010
[38] 胡振, 左洪亮, 李亚楠, 等. 甜菜夜蛾过氧化氢酶cDNA序列克隆、序列分析和表达特征[J]. 昆虫学报, 2011, 54(11): 1249 − 1257.
[39]

LU Y, BAI Q, ZHENG X, et al. Expression and enzyme activity of catalase in Chilo suppressalis (Lepidoptera: Crambidae) is responsive to environmental stresses[J]. Journal of Economic Entomology, 2017, 110(4): 1803 − 1812. doi:  10.1093/jee/tox117
[40] 郑玉涛. 高温胁迫对西花蓟马抗氧化酶活性的影响及CAT基因的克隆与表达[D]. 扬州: 扬州大学, 2015.
[41]

ALI A, RASHID M A, HUANG Q Y, et al. Response of antioxidant enzymes inMythimna separata(Lepidoptera: Noctuidae) exposed to thermal stress[J]. Bulletin of Entomological Research, 2017, 107(3): 382 − 390. doi:  10.1017/S0007485316001000
[42]

LIU X, FU Z X, KANG Z W, et al. Identification and characterization of antioxidant enzyme genes in parasitoid Aphelinus asychis (Hymenoptera: Aphelinidae) and expression profiling analysis under temperature stress[J]. Insects, 2022, 13(5): 447. doi:  10.3390/insects13050447
[43]

BODLAH M A, IQBAL J, ASHIQ A, et al. Insect behavioral restraint and adaptation strategies under heat stress: an inclusive review[J]. Journal of the Saudi Society of Agricultural Sciences, 2023, 22(6): 327 − 350. doi:  10.1016/j.jssas.2023.02.004