[1] |
BUSTIN S A, BENES V, NOLAN T, et al. Quantitative real-time RT-PCR-a perspective[J]. Journal of Molecular Endocrinology, 2005, 34(3): 597 − 601. doi: 10.1677/jme.1.01755 |
[2] |
GACHON C, MINGAM A, CHARRIER B. Real-time PCR: what relevance to plant studies?[J]. Journal of Experimental Botany, 2004, 55(402): 1445 − 1454. doi: 10.1093/jxb/erh181 |
[3] |
张玉芳, 赵丽娟, 曾幼玲. 基因表达研究中内参基因的选择与应用[J]. 植物生理学报, 2014, 50(8): 1119 − 1125. |
[4] |
蒋婷婷, 高燕会, 童再康. 石蒜属植物实时荧光定量PCR内参基因的选择[J]. 园艺学报, 2015, 42(6): 1129 − 1138. |
[5] |
MÜLLER O A, GRAU J, THIEME S, et al. Genome-Wide Identification and Validation of Reference Genes in Infected Tomato Leaves for Quantitative RT-PCR Analyses[J]. Plos One, 2015, 10 27;10(8): e0136499. |
[6] |
ZHANG Y, ZHU L, XUE J, et al. Selection and Verification of Appropriate Reference Genes for Expression Normalization in Cryptomeria fortunei under Abiotic Stress and Hormone Treatments[J]. Genes (Basel), 2021, 12(6): 791. doi: 10.3390/genes12060791 |
[7] |
李铁铮, 王金铃, 刘晓, 等. 管花肉苁蓉实时荧光定量PCR分析中内参基因的选择和验证[J]. 植物生理学报, 2021, 57(4): 969 − 981. |
[8] |
HU J, ISRAELI A, ORI N, et al. The interaction between DELLA and ARF/IAA mediates crosstalk between gibberellin and auxin signaling to control fruit initiation in tomato[J]. The Plant cell, 2018, 30(8): 1710 − 1728. doi: 10.1105/tpc.18.00363 |
[9] |
KONG X, ZHANG C, ZHENG H, et al. Antagonistic Interaction between Auxin and SA Signaling Pathways Regulates Bacterial Infection through Lateral Root in Arabidopsis[J]. Cell Rep, 2020, 32(8): 108060. doi: 10.1016/j.celrep.2020.108060 |
[10] |
GAO J, CHEN H, YANG H, et al. A brassinosteroid responsive miRNA-target module regulates gibberellin biosynthesis and plant development[J]. New Phytol, 2018, 220(2): 488 − 501. doi: 10.1111/nph.15331 |
[11] |
董汉松. 植物抗病防卫基因表达调控与诱导抗性遗传的机制[J]. 植物病理学报, 1996(4): 2 − 6. |
[12] |
XU P, FANG S, CHEN H, et al. The brassinosteroid-responsive xyloglucan endotransglucosylase/hydrolase 19 (XTH19) and XTH23 genes are involved in lateral root development under salt stress in Arabidopsis[J]. The Plant Journal, 2020, 104(1): 59 − 75.页码?. |
[13] |
白圣懿, 王晓敏, 刘文娟, 等. 不同激素处理下番茄实时荧光定量聚合酶链反应内参基因的筛选[J]. 浙江大学学报(农业与生命科学版), 2023, 49(1): 31 − 44. |
[14] |
韩晓雪, 韩佳轩, 姜晶. 番茄在非生物胁迫下实时定量RT-PCR中内参基因的筛选[J]. 分子植物育种, 2015, 13(4): 822 − 831. |
[15] |
REBECA PATRÍCIA OMENA-GARCIA, B A O M A, C D B M A, et al. Growth and metabolic adjustments in response to gibberellin deficiency in drought stressed tomato plants - ScienceDirect[J]. Environmental and Experimental Botany, 2019, 159: 95 − 107. doi: 10.1016/j.envexpbot.2018.12.011 |
[16] |
HU E, LIU M, ZHOU R, et al. Relationship between melatonin and abscisic acid in response to salt stress of tomato[J]. Scientia Horticulturae, 2021, 285(6): 110176. |
[17] |
LU J, GUAN P, GU J, et al. Exogenous DA-6 Improves the Low Night Temperature Tolerance of Tomato Through Regulating Cytokinin[J]. Front Plant Sci, 2021, 11: 599111. doi: 10.3389/fpls.2020.599111 |
[18] |
ALBUQUERQUE G M R, FONSECA F C A, BOITEUX L S, et al. Stability analysis of reference genes for RT-qPCR assays involving compatible and incompatible Ralstonia solanacearum-tomato 'Hawaii 7996' interactions[J]. Scientific Reports, 2021, 11(1): 18719. doi: 10.1038/s41598-021-97854-8 |
[19] |
EXPÓSITO-RODRÍGUEZ M, BORGES A A, BORGES-PÉREZ A, et al. Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process[J]. BMC Plant Biology, 2008, 8(1): 131. doi: 10.1186/1471-2229-8-131 |
[20] |
ALFENAS-ZERBINI P, MAIA I G, FÁVARO R D, et al. Genome-wide analysis of differentially expressed genes during the early stages of tomato infection by a potyvirus[J]. Molecular Plant-microbe Interactions, 2009, 22(3): 352 − 361. doi: 10.1094/MPMI-22-3-0352 |
[21] |
MASCIA T, SANTOVITO E, GALLITELLI D, et al. Evaluation of reference genes for quantitative reverse-transcription polymerase chain reaction normalization in infected tomato plants[J]. Molecular Plant Pathology, 2010, 11(6): 805 − 816. doi: 10.1111/j.1364-3703.2010.00646.x |
[22] |
CHOI S W, HOSHIKAWA K, FUJITA S, et al. Evaluation of internal control genes for quantitative realtime PCR analyses for studying fruit development of dwarf tomato cultivar 'Micro-Tom'[J]. Plant Biotechnol (Tokyo), 2018, 35(3): 225 − 235. doi: 10.5511/plantbiotechnology.18.0525a |
[23] |
CHEN X, CHEN J D, LIAO D H, et al. Auxin-mediated regulation of arbuscular mycorrhizal symbiosis: A role of SlGH3.4 in tomato[J]. Plant Cell & Environment, 2022, 45(3): 955 − 968. |
[24] |
VANDESOMPELE J, DE PRETER K, PATTYN F, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes[J]. Genome Biology, 2002, 3(7): RESEARCH0034. doi: 10.1186/gb-2002-3-7-reports0034 |
[25] |
ANDERSEN C L, JENSEN J L, øRNTOFT T F. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets[J]. Cancer Research, 2004, 64(15): 5245 − 5250. doi: 10.1158/0008-5472.CAN-04-0496 |
[26] |
PFAFFL M W, TICHOPAD A, PRGOMET C, et al. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-based tool using pair-wise correlations[J]. Biotechnology Letters, 2004, 26(6): 509 − 515. doi: 10.1023/B:BILE.0000019559.84305.47 |
[27] |
吴悠, 冀宏宇, 邓淑雯, 等. 三褶虾脊兰花发育相关基因RT-qPCR内参基因的筛选[J]. 园艺学报, 2024, 51(9): 2063 − 2074. doi: 10.16420/j.issn.0513-353x.2023-0954 |
[28] |
李佳妮, 张姝, 张永杰. 布莱克韦尔虫草逆转录定量PCR内参基因的筛选[J/OL]. 微生物学通报, 1-12[2024-06-20]. https://doi.org/10.13344/j.microbiol.china.240343. |
[29] |
颜爽爽, 邱正坤, 余炳伟, 等. 植物生长素响应高温胁迫研究进展[J]. 园艺学报, 2020, 47(11): 2238 − 2246. |
[30] |
园园, 恩和巴雅尔, 齐艳华. 植物GH3基因家族生物学功能研究进展[J]. 植物学报, 2023, 58(5): 770 − 782. doi: 10.11983/CBB22263 |
[31] |
CARISEY A F, MACE E M, SAEED M B, et al. Nanoscale dynamism of actin enables secretory function in cytolytic cells[J]. Current Biology, 2018, 28(4): 489 − 502. doi: 10.1016/j.cub.2017.12.044 |
[32] |
CITRI A, PANG Z P, SÜDHOF T C, et al. Comprehensive qPCR profiling of gene expression in single neuronal cells[J]. Nature Protocols, 2011, 7(1): 118 − 127. |
[33] |
宋雄. 欧芹不同逆境条件下适宜内参基因的筛选[D]. 南京: 南京农业大学, 2016. |
[34] |
黄丽萍, 李思鸿, 钟启文, 等. 香瓜茄多组织部位和病害胁迫条件下qRT-PCR内参基因的选择[J]. 青海大学学报, 2022, 40(3): 33 − 40. |
[35] |
岳炜楠, 胥通玉, 苗佳敏, 等. 紫花苜蓿不同组织及不同激素处理下内参基因的筛选[J/OL]. 草原与草坪, 1-16[2024-06-20]. http://kns.cnki.net/kcms/detail/62.1156.S.20240521.1243.002.html. |
[36] |
徐圆圆, 赵国春, 郝颖颖, 等. 无患子RT-qPCR内参基因的筛选与验证[J]. 生物技术通报, 2022, 38(10): 80 − 89. |
[37] |
巨秀婷, 何金娣, 张梦洁, 等. 郁金香不同组织内参基因筛选及稳定表达分析[J]. 南方农业学报, 2023, 54(11): 3174 − 3185. |
[38] |
LIAO D, CHEN X, CHEN A, et al. The characterization of six auxin-induced tomato GH3 genes uncovers a member, SlGH3.4, strongly responsive to arbuscular mycorrhizal symbiosis[J]. Plant and Cell Physiology, 2015, 56(4): 674 − 687. doi: 10.1093/pcp/pcu212 |
[39] |
LIU H, LIU J, CHEN P, et al. Selection and validation of optimal RT-qPCR reference genes for the nrmalization of gene expression under different experimental conditions in lindera megaphylla[J]. Plants-Basel, 2023, 12(1): 2185. |