[1] |
BHAT R G, SUBBARAO K V. Host range specificity in Verticillium dahliae[J]. Phytopathology, 1999, 89(12): 1218 − 1225. doi: 10.1094/PHYTO.1999.89.12.1218 |
[2] |
林玲, 张昕, 邓晟. 棉花黄萎病研究进展[J]. 棉花学报, 2014, 26(3): 260 − 267. doi: 10.3969/j.issn.1002-7807.2014.03.010 |
[3] |
殷锡圣, 刘润进. 棉花黄萎病研究进展[J]. 中国棉花, 1996, 23(5): 2 − 6. |
[4] |
李廷刚, 巩东营, 张倩倩. 棉花抗黄萎病遗传学研究进展[J]. 农学学报, 2022, 12(9): 31 − 36. doi: 10.11923/j.issn.2095-4050.2022.9.zgncxkkj202209006 |
[5] |
喻树迅, 张雷, 冯文娟. 棉花生产规模化、机械化、信息化、智能化和社会服务化发展战略研究[J]. 中国工程科学, 2016, 18(1): 137 − 148. |
[6] |
田擎, 张海峰, 曾丹丹, 等. 环介导等温扩增技术检测大丽轮枝菌[J]. 植物病理学报, 2016, 46(6): 721 − 729. |
[7] |
朱荷琴, 李志芳, 冯自力, 等. 我国棉花黄萎病研究十年回顾及展望[J]. 棉花学报, 2017, 29(S1): 37 − 50. |
[8] |
沈林波, 吴楠楠, 冯小艳, 等. 我国蔗区甘蔗宿根矮化病发生情况的分子检测[J]. 热带生物学报, 2019, 10(4): 314 − 318. |
[9] |
杜艳楠, 王萌, 马建强, 等. 植物病原真菌早期检测技术及其在橡胶树炭疽病预测预报中的应用[J]. 热带生物学报, 2021, 12(1): 124 − 131. |
[10] |
BAO J, CHEN Y, XING Y, et al. Development of a nested PCR assay for specific detection of Metschnikowia bicuspidata infecting Eriocheir sinensis[J]. Frontiers in Cellular and Infection Microbiology, 2022, 12: 930585. doi: 10.3389/fcimb.2022.930585 |
[11] |
许晓琳, 袁向芬, 孔玉方, 等. 猴痘病毒实时荧光LAMP检测方法的建立[J]. 黑龙江畜牧兽医, 2024(2): 72 − 78. |
[12] |
ZHANG K, SUN Z, SHI K, et al. RPA-CRISPR/Cas12a-based detection of Haemophilus parasuis[J]. Animals, 2023, 13(21): 3317. doi: 10.3390/ani13213317 |
[13] |
李园. 土壤消毒及土传病原真菌的分子生物学鉴定 [D]. 北京: 中国农业科学院, 2006. |
[14] |
MORADI A, ALMASI M A, JAFARY H, et al. A novel and rapid loop-mediated isothermal amplification assay for the specific detection of Verticillium dahliae[J]. Journal of Applied Microbiology, 2014, 116(4): 942 − 954. doi: 10.1111/jam.12407 |
[15] |
WANG D, JIAO X, JIA H, et al. Detection and quantification of Verticillium dahliae and V. longisporum by droplet digital PCR versus quantitative real-time PCR[J]. Frontiers in Cellular and Infection Microbiology, 2022, 12: 995705. doi: 10.3389/fcimb.2022.995705 |
[16] |
PÉREZ-ARTÉS E, GARCÍA-PEDRAJAS M D, BEJARANO-ALCÁZAR J, et al. Differentiation of cotton-defoliating and nondefoliating pathotypes of Verticillium dahliae by RAPD and specific PCR analyses[J]. European Journal of Plant Pathology, 2000, 106(6): 507 − 517. doi: 10.1023/A:1008756307969 |
[17] |
VERDIN E, SAILLARD C, LABBé A, et al. A nested PCR assay for the detection of Mycoplasma hyopneumoniae in tracheobronchiolar washings from pigs[J]. Veterinary Microbiology, 2000, 76(1): 31 − 40. doi: 10.1016/S0378-1135(00)00228-5 |
[18] |
LAM W Y, YEUNG A C M, TANG J W, et al. Rapid multiplex nested PCR for detection of respiratory viruses[J]. Journal of Clinical Microbiology, 2007, 45(11): 3631 − 3640. doi: 10.1128/JCM.00280-07 |
[19] |
PéREZ-ARTéS E, MERCADO-BLANCO J, RUZ-CARRILLO A R, et al. Detection of the defoliating and nondefoliating pathotypes of Verticillium dahliae in artificial and natural soils by nested PCR[J]. Plant and Soil, 2005, 268(1): 349 − 356. doi: 10.1007/s11104-004-0378-1 |
[20] |
庞莉, 李梅, 孙青, 等. 棉花黄萎病病原菌大丽轮枝菌的快速分子检测[J]. 植物保护学报, 2016, 43(6): 892 − 899. |
[21] |
WANG D, ZHANG D D, USAMI T, et al. Functional genomics and comparative lineage-specific region analyses reveal novel insights into race divergence in Verticillium dahliae[J]. Microbiology Spectrum, 2021, 9(3): e0111821. doi: 10.1128/Spectrum.01118-21 |