[1] 辛曙丽, 刘永华, 陈庆河. 中国榴梿产业发展现状·研究进展及展望[J]. 安徽农业科学, 2025, 53(24): 21−26.
[2] 谢圣华, 李向宏, 张晶, 等. 海南省榴莲病虫害调查初报[J]. 中国果树, 2025(1): 118−126. https://doi.org/10.16626/j.cnki.issn1000-8047.2025.01.018 doi:  10.16626/j.cnki.issn1000-8047.2025.01.018
[3] 何红照, 周兆禧, 李新国, 等. 低温胁迫下不同品种榴莲幼苗叶片解剖结构及光合特性分析[J/OL]. 中国南方果树, 1-156-01-06]. https://doi.org/10.13938/j.issn.1007-1431.20240623. (in Chinese

6-01-06]. https://doi.org/10.13938/j.issn.1007-1431.20240623.
[4]

Galau G A, Dure III L. Developmental biochemistry of cottonseed embryogenesis and germination: changing messenger ribonucleic acid populations as shown by reciprocal heterologous complementary deoxyribonucleic acid-messenger ribonucleic acid hybridization [J]. Biochemistry, 1981, 20(14): 4169−4178. https://doi.org/10.1021/bi00517a034 doi:  10.1021/bi00517a034
[5]

Zou Z, Li M Y, Jia R Z, et al. Genes encoding light-harvesting chlorophyll a/b-binding proteins in papaya (Carica papaya L. ) and insight into lineage-specific evolution in brassicaceae [J]. Gene, 2020, 748: 144685. https://doi.org/10.1016/j.gene.2020.144685 doi:  10.1016/j.gene.2020.144685
[6]

Hundertmark M, Hincha D K. Lea (Late Embryogenesis Abundant) proteins and their encoding genes in Arabidopsis thaliana [J]. BMC Genomics, 2008, 9: 118. https://doi.org/10.1186/1471-2164-9-118 doi:  10.1186/1471-2164-9-118
[7]

Wang X S, Zhu H B, Jin G L, et al. Genome-scale identification and analysis of LEA genes in rice (Oryza sativa L. ) [J]. Plant Science, 2007, 172(2): 414−420. https://doi.org/10.1016/j.plantsci.2006.10.004 doi:  10.1016/j.plantsci.2006.10.004
[8]

Su L, Zhao C Z, Bi Y P, et al. Isolation and expression analysis of lea genes in peanut (Arachis hypogaea L. ) [J]. Journal of Biosciences, 2011, 36(2): 223−228. https://doi.org/10.1007/s12038-011-9058-5 doi:  10.1007/s12038-011-9058-5
[9]

Jin X F, Cao D, Wang Z J, et al. Genome-wide identification and expression analyses of the lea protein gene family in tea plant reveal their involvement in seed development and abiotic stress responses [J]. Scientific Reports, 2019, 9(1): 14123. https://doi.org/10.1038/s41598-019-50645-8 doi:  10.1038/s41598-019-50645-8
[10]

Artur M A S, Zhao T, Ligterink W, et al. Dissecting the genomic diversification of late embryogenesis abundant (LEA) protein gene families in plants [J]. Genome Biology and Evolution, 2019, 11(2): 459−471. https://doi.org/10.1093/gbe/evy248 doi:  10.1093/gbe/evy248
[11]

Garay-Arroyo A, Colmenero-Flores J M, Garciarrubio A, et al. Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit [J]. Journal of Biological Chemistry, 2000, 275(8): 5668−5674. https://doi.org/10.1074/jbc.275.8.5668 doi:  10.1074/jbc.275.8.5668
[12]

Li W W, Chen X, Yu J N, et al. Upgraded durian genome reveals the role of chromosome reshuffling during ancestral karyotype evolution, lignin biosynthesis regulation, and stress tolerance [J]. Science China Life Sciences, 2024, 67(6): 1266−1279. https://doi.org/10.1007/s11427-024-2580-3 doi:  10.1007/s11427-024-2580-3
[13]

Chen C J, Chen H, Zhang Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data [J]. Molecular Plant, 2020, 13(8): 1194−1202. https://doi.org/10.1016/j.molp.2020.06.009 doi:  10.1016/j.molp.2020.06.009
[14]

Horton P, Park K J, Obayashi T, et al. WoLF PSORT: protein localization predictor [J]. Nucleic Acids Research, 2007, 35(suppl_2): W585−W587. https://doi.org/10.1093/nar/gkm259 doi:  10.1093/nar/gkm259
[15]

Letunic I, Bork P. Interactive tree of life (iTOL)v6: recent updates to the phylogenetic tree display and annotation tool [J]. Nucleic Acids Research, 2024, 52(W1): W78−W82. https://doi.org/10.1093/nar/gkae268 doi:  10.1093/nar/gkae268
[16]

Cantalapiedra C P, Hernández-Plaza A, Letunic I, et al. EggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale [J]. Molecular Biology and Evolution, 2021, 38(12): 5825−5829. https://doi.org/10.1093/molbev/msab293 doi:  10.1093/molbev/msab293
[17]

Ye J, Coulouris G, Zaretskaya I, et al. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction [J]. BMC Bioinformatics, 2012, 13: 134. https://doi.org/10.1186/1471-2105-13-134 doi:  10.1186/1471-2105-13-134
[18]

Pedrosa A M, De Paula Santos Martins C, Gonçalves L P, et al. Late Embryogenesis Abundant (LEA) constitutes a large and diverse family of proteins involved in development and abiotic stress responses in sweet orange (Citrus sinensis L. Osb. ) [J]. PLoS One, 2015, 10(12): e0145785. https://doi.org/10.1371/journal.pone.0145785 doi:  10.1371/journal.pone.0145785
[19]

Wu C L, Hu W, Yan Y, et al. The late embryogenesis abundant protein family in cassava (Manihot esculenta crantz): genome-wide characterization and expression during abiotic stress [J]. Molecules, 2018, 23(5): 1196. https://doi.org/10.3390/molecules23051196 doi:  10.3390/molecules23051196
[20] 赵东方, 苗红霞, 刘菊华, 等. 香蕉胚胎发育晚期丰富蛋白(MaLEA)家族生物信息学分析[J]. 分子植物育种, 2020, 18(12): 3893−3901. https://doi.org/10.13271/j.mpb.018.003893 doi:  10.13271/j.mpb.018.003893
[21]

Ling H, Zeng X, Guo S X. Functional insights into the late embryogenesis abundant (LEA) protein family from Dendrobium officinale (orchidaceae) using an Escherichia coli system [J]. Scientific Reports, 2016, 6: 39693. https://doi.org/10.1038/srep39693 doi:  10.1038/srep39693
[22]

Candat A, Paszkiewicz G, Neveu M, et al. The ubiquitous distribution of late embryogenesis abundant proteins across cell compartments in Arabidopsis offers tailored protection against abiotic stress [J]. The Plant Cell, 2014, 26(7): 3148−3166. https://doi.org/10.1105/tpc.114.127316 doi:  10.1105/tpc.114.127316
[23]

Hincha D K, Thalhammer A. LEA proteins: IDPs with versatile functions in cellular dehydration tolerance [J]. Biochemical Society Transactions, 2012, 40(5): 1000−1003. https://doi.org/10.1042/BST20120109 doi:  10.1042/BST20120109
[24]

Defoort J, Van De Peer Y, Carretero-Paulet L. The evolution of gene duplicates in angiosperms and the impact of protein-protein interactions and the mechanism of duplication [J]. Genome Biology and Evolution, 2019, 11(8): 2292−2305. https://doi.org/10.1093/gbe/evz156 doi:  10.1093/gbe/evz156