[1] 梁海波, 黄洁, 魏云霞. 木薯营养施肥研究与实践[M]. 北京: 中国农业科学技术出版社, 2018.
[2] 贾晶霞, 李雷霞. 世界及中国木薯生产概况[J]. 农业工程, 2015, 5(5): 124 − 126. doi:  10.3969/j.issn.2095-1795.2015.05.036
[3] 陈丽珍, 叶剑秋. 我国木薯加工业的发展现状与展望[J]. 园艺与种苗, 2011(3): 87 − 90. doi:  10.3969/j.issn.2095-0896.2011.03.030
[4] 盘欢. 亚洲11 国木薯生产概况[J]. 广西热带农业, 2009, 5: 29 − 31.
[5] EU L S, 张开明. 中国台湾省的木薯细菌性疫病[J]. 热带作物译丛, 1985, 8: 58 − 60.
[6] 文衍堂. 木薯细菌性疫病病原菌鉴定[J]. 热带作物学报, 1982, 3(2): 91 − 97.
[7] 李超萍, 时涛, 刘先宝, 等. 国内木薯病害普查及细菌性萎蔫病安全性评估[J]. 热带作物学报, 2011, 32(1): 116 − 121. doi:  10.3969/j.issn.1000-2561.2011.01.024
[8] 曾小荣, 郑刚辉. 木薯主要病虫害的发生及防治[J]. 现代农业科技, 2011, 18: 200,205. doi:  10.3969/j.issn.1007-5739.2011.18.147
[9] 时涛, 蔡吉苗, 李超萍, 等. 木薯细菌性萎蔫病菌抗铜性评价及抗铜相关基因簇分子分析[J]. 热带作物学报, 2017, 38(3): 529 − 540. doi:  10.3969/j.issn.1000-2561.2017.03.023
[10] 方中达. 植病研究方法[M]. 3版. 北京: 中国农业出版社, 1998.
[11] 赵友福, 张乐. 植物病原细菌简明手册[M]. 北京: 农业部植物检疫实验所, 1992.
[12] 慕立义. 植物化学保护研究原理[M]. 北京: 中国农业出版社, 1999.
[13] 丁小云, 耿俊丽, 魏成熙, 等. 不同破壁方法对大肠杆菌DNA提取的影响[J]. 贵州农业科学, 2010, 4: 149 − 150. doi:  10.3969/j.issn.1001-3601.2010.01.045
[14]

VOLOUDAKIS A E, REIGNIER T M, COOKSEY D A. Regulation of resistance to copper in Xanthomonas axonopodis pv. vesicatoria [J]. Applied and Environmental Microbiology, 2005, 71(2): 782 − 789. doi:  10.1128/AEM.71.2.782-789.2005
[15]

BROWN N L, BARRETT S R, CAMAKARIS J, et al. Molecular genetics and transport analysis of the copper-resistance determinant (pco) from Escherichia coli plasmid pRJ1004 [J]. Mol Microbiol, 1995, 17(6): 1153 − 1166. doi:  10.1111/j.1365-2958.1995.mmi_17061153.x
[16]

PAO G M, SAIER M H. Response regulators of bacterial signal transduction systems: selective domain shuffling during evolution [J]. Journal Of Molecular Evolution, 1995, 40(2): 136 − 154. doi:  10.1007/BF00167109
[17]

FRANKLIN B, BLANCA I C, GERALD V M, et al. Molecular characterization of copper resistance genes from Xanthomonas citri subsp. citri and Xanthomonas alfalfae subsp. citrumelonis [J]. Applied Microbiology and Biotechnology[J]., 2011, 77(12): 4089 − 4096.
[18]

LEE Y A, HENDSON M, PANOPOULOS N J, et al. Molecular cloning, chromosomal mapping, and sequence analysis of copper resistance genes from Xanthomonas campestris pv. juglandis: homology with small blue copper proteins and multicopper oxidase [J]. Journal of Bacteriology, 1994, 176(1): 173 − 188. doi:  10.1128/jb.176.1.173-188.1994
[19]

KUBE M, MIGDOLL A M, MULLER I, et al. The genome of Erwinia tasmaniensis strain Et1/99, a non-pathogenic bacterium in the genus Erwinia [J]. Environmental Microbiology, 2008, 10(9): 2211 − 2222. doi:  10.1111/j.1462-2920.2008.01639.x
[20]

POTNIS N, KRASILEVA K, CHOW V, et al. Comparative genomics reveals diversity among Xanthomonads infecting tomato and pepper [J]. BMC Genomics, 2011, 12: 146.1471 − 2164.
[21]

BEHLAU F, HONG J C, JONES J B, et al. Evidence for acquisition of copper resistance genes from different sources in citrus-associated Xanthomonads [J]. Phytopathology, 2013, 130(5): 409 − 418.
[22]

ABBASI P A, KHABBAZ S E, WESELOWSKI B, et al. Occurrence of copper-resistant strains and a shift in Xanthomonas spp. causing tomato bacterial spot in Ontario [J]. Canadian Journal of Microbiology, 2015, 61: 753 − 761. doi:  10.1139/cjm-2015-0228
[23]

MARIN T G S, GALVANIN A L, LANZA F E, et al. Description of copper tolerant Xanthomonas citri subsp. citri and genotypic comparison with sensitive and resistant strains [J]. Plant Pathology, 2019, 68(6): 1088 − 1098. doi:  10.1111/ppa.13026
[24]

BENZHONG F, JIEQIAN Z, CONARD L, et al. Multilocus sequence analysis and copper ion resistance detection of 60 Xanthomonas arboricola pv. juglandis isolates from China[J]. 2021, 105(11): 3715-3719
[25]

LAI Y R, LIN C H, CHANG C P, et al. Distribution of copper resistance gene variants of Xanthomonas citri subsp. citri and Xanthomonas euvesicatoria pv. perforans [J]. Plant Protection Science, 2021, 57(3): 206 − 216. doi:  10.17221/160/2020-PPS
[26] 吴亚男. Xanthomonas gardneri抗铜基因copB的克隆及功能鉴定[D]. 长沙: 湖南农业大学, 2012
[27] 孔令广, 巨延虎, 董冉, 等. CopAB基因突变导致 PXO99 对铜敏感和致病性降低[J]. 植物病理学报, 2018, 48(2): 176 − 186.