[1] |
WANG X X, XIAO X M, XU X, et al. Rebound in China’s coastal wetlands following conservation and restoration[J]. Nature Sustainability, 2021, 4(12): 1076 − 1083. doi: 10.1038/s41893-021-00793-5 |
[2] |
OSLAND M J, CHIVOIU B, ENWRIGHT N M, et al. Migration and transformation of coastal wetlands in response to rising seas[J]. Science Advances, 2022, 8(26): eabo5174. doi: 10.1126/sciadv.abo5174 |
[3] |
CUI L L, LI G S, ZHAO M, et al. Quantifying the cumulative effects of large-scale reclamation on coastal wetland degradation[J]. Land, 2024, 13(9): 1404. doi: 10.3390/land13091404 |
[4] |
ZHAO H X, ZHANG S B, YANG W, et al. Coupling and decoupling of soil carbon and nutrients cycles at different salinity levels in a mangrove wetland: insights from CUE and enzymatic stoichiometry[J]. Science of the Total Environment, 2024, 922: 171039. doi: 10.1016/j.scitotenv.2024.171039 |
[5] |
ACHAT D L, AUGUSTO L, GALLET-BUDYNEK A, et al. Future challenges in coupled C–N–P cycle models for terrestrial ecosystems under global change: a review[J]. Biogeochemistry, 2016, 131(1): 173 − 202. doi: 10.1007/s10533-016-0274-9 |
[6] |
王绍强, 于贵瑞. 生态系统碳氮磷元素的生态化学计量学特征[J]. 生态学报, 2008, 28(8): 3937 − 3947. doi: 10.3321/j.issn:1000-0933.2008.08.054 |
[7] |
YU J B, ZHAN C, LI Y Z, et al. Distribution of carbon, nitrogen and phosphorus in coastal wetland soil related land use in the Modern Yellow River Delta[J]. Scientific Reports, 2016, 6: 37940. doi: 10.1038/srep37940 |
[8] |
严维兵, 饶文波, 栗天宁, 等. 江苏沿海沉积物有机磷含量、总有机碳、总氮与同位素特征及有机质来源解析[J]. 地球科学与环境学报, 2024, 46(1): 67 − 80. doi: 10.19814/j.jese.2023.06026 |
[9] |
农业农村部渔业渔政管理局. 2023年全国渔业经济统计公报发布[J]. 水产科技情报, 2024, 51(4): 269. |
[10] |
LIU X Q, LAN C Y, ZHU L H, et al. Sediment resuspension as a driving force for organic carbon transference and rebalance in marginal seas[J]. Water Research, 2024, 257: 121672. doi: 10.1016/j.watres.2024.121672 |
[11] |
LI Z W, WANG X F, XIONG J Y, et al. Flow structure, bed morphology and contaminated sediment transport at the confluences of pipe and channel[J]. Environmental Fluid Mechanics, 2024, 24(3): 367 − 385. doi: 10.1007/S10652-024-09989-7 |
[12] |
BOIX-FAYOS C, NADEU E, QUIÑONERO J M, et al. Sediment flow paths and associated organic carbon dynamics across a Mediterranean catchment[J]. Hydrology and Earth System Sciences, 2015, 19(3): 1209 − 1223. doi: 10.5194/hess-19-1209-2015 |
[13] |
谢海清. 基于FVCOM的中国近海潮流及潮汐能数值模拟研究[D]. 长沙: 长沙理工大学, 2018. |
[14] |
KUHN N J, HOFFMANN T, SCHWANGHART W, et al. Agricultural soil erosion and global carbon cycle: controversy over?[J]. Earth Surface Processes and Landforms, 2009, 34(7): 1033 − 1038. doi: 10.1002/esp.1796 |
[15] |
SMITH J C, GALY A, HOVIUS N, et al. Runoff-driven export of particulate organic carbon from soil in temperate forested uplands[J]. Earth and Planetary Science Letters, 2013, 365: 198 − 208. doi: 10.1016/j.jpgl.2013.01.027 |
[16] |
KIRKELS F M S A, CAMMERAAT L H, KUHN N J. The fate of soil organic carbon upon erosion, transport and deposition in agricultural landscapes-a review of different concepts[J]. Geomorphology, 2014, 226: 94 − 105. doi: 10.1016/j.geomorph.2014.07.023 |
[17] |
KNORR S, WEISENER C G, PHILLIPS L A. Agricultural land management alters the biogeochemical cycling capacity of aquatic and sediment environments[J]. Agriculture, Ecosystems & Environment, 2023, 357: 108661. doi: 10.1016/j.agee.2023.108661 |
[18] |
KEMP D B, SADLER P M, VANACKER V. The human impact on North American erosion, sediment transfer, and storage in a geologic context[J]. Nature Communications, 2020, 11(1): 6012. doi: 10.1038/s41467-020-19744-3 |
[19] |
DE JONG E, BUTTON R G. Effects of pipeline installation on soil properties and productivity[J]. Canadian Journal of Soil Science, 1973, 53(1): 37 − 47. doi: 10.4141/cjss73-005 |
[20] |
ABERNETHY R K, GOSSELINK J G. Environmental conditions of a backfilled pipeline canal four years after construction[J]. Wetlands, 1988, 8(2): 109 − 121. doi: 10.1007/BF03160596 |
[21] |
许申来, 陈利顶, 陈忱, 等. 管道工程建设对沿线地区农业土壤养分的影响——以西气东输冀宁联络线为例[J]. 农业环境科学学报, 2008, 27(2): 627 − 635. doi: 10.3321/j.issn:1672-2043.2008.02.042 |
[22] |
徐步欣, 张剑, 郎尚昆, 等. 海南文昌沿岸海草床的现状及其退化因素分析[J]. 应用海洋学学报, 2022, 41(4): 614 − 624. doi: 10.3969/J.ISSN.2095-4972.2022.04.007 |
[23] |
肖玉林, 施凯, 许强. 海南岛热带典型天然牡蛎礁生态系统营养结构与功能评价[J]. 生态学报, 2025, 45(4): 1697 − 1710. doi: 10.20103/j.stxb.202405081029 |
[24] |
QIN Y Q, REN X Y, ZHANG Y K, et al. Distribution characteristics of antibiotic resistance genes and microbial diversity in the inshore aquaculture area of Wenchang, Hainan, China[J]. Science of the Total Environment, 2024, 914: 169695. doi: 10.1016/j.scitotenv.2023.169695 |
[25] |
MA Z W, WU Y A, ZHAO S Q, et al. The role of tidal creeks in shaping carbon and nitrogen patterns in a Chinese salt marsh[J]. Frontiers in Marine Science, 2024, 11: 1361474. doi: 10.3389/fmars.2024.1361474 |
[26] |
ANDERSON T H, DOMSCH K H. Ratios of microbial biomass carbon to total organic carbon in arable soils[J]. Soil Biology and Biochemistry, 1989, 21(4): 471 − 479. doi: 10.1016/0038-0717(89)90117-X |
[27] |
HU M J, WANG J T, SARDANS J, et al. Coastal conversion alters topsoil carbon, nitrogen and phosphorus stocks and stoichiometric balances in subtropical coastal wetlands[J]. Science of the Total Environment, 2024, 944: 174011. doi: 10.1016/j.scitotenv.2024.174011 |
[28] |
MAIR P, WILCOX R. Robust statistical methods in R using the WRS2 package[J]. Behavior Research Methods, 2020, 52(2): 464 − 488. doi: 10.3758/s13428-019-01246-w |
[29] |
DE HAAN J R, BAUERSCHMIDT S, VAN SCHAIK R C, et al. Robust ANOVA for microarray data[J]. Chemometrics and Intelligent Laboratory Systems, 2009, 98(1): 38 − 44. doi: 10.1016/j.chemolab.2009.04.011 |
[30] |
LU S S, ZHOU N Q, CAI Y, et al. Ecological stoichiometry of carbon, nitrogen and phosphorus in deep sediments within the critical zone of south Dongting Lake wetland, China[J]. Journal of Soil Science and Plant Nutrition, 2024, 24(4): 6389 − 6403. doi: 10.1007/s42729-024-01976-7 |
[31] |
FRANZEN M O, SILVA P, SIEGLE E, et al. Influence of long jetties on estuarine and coastal hydrodynamics in a microtidal estuary[J]. Regional Studies in Marine Science, 2023, 59: 102809. doi: 10.1016/j.rsma.2022.102809 |
[32] |
LUO W G, LU J, ZHU S L, et al. Investigation of the impact of hydrodynamic conditions on sediment resuspension in shallow lakes[J]. International Journal of Digital Earth, 2022, 15(1): 1676 − 1691. doi: 10.1080/17538947.2022.2131007 |
[33] |
HUANG S Y, LI Q, QIU X H, et al. Benthic foraminiferal assemblages in the coastal zone of the Yellow River Delta: environmental significance and characteristics of microbial diversity[J]. Continental Shelf Research, 2024, 275: 105183. doi: 10.1016/j.csr.2024.105183 |
[34] |
连宾, 陈烨, 朱立军, 等. 微生物对碳酸盐岩的风化作用[J]. 地学前缘, 2008, 15(6): 90 − 99. doi: 10.3321/j.issn:1005-2321.2008.06.012 |
[35] |
陈柯江, 黄友达, 董美君, 等. 电缆细菌: 水生态系统中的“生物电缆”驱动元素循环与生态修复[J]. 微生物学报, 2024, 64(12): 4578 − 4592. doi: 10.13343/j.cnki.wsxb.20240478 |
[36] |
韦世金, 孟倪, 韦钦胜, 等. 沉积物活性铁锰特征对比研究及其对有机碳矿化的意义——以长江口、黄海中部陆架泥质区和黄河口为例[J]. 海洋科学进展, 2024, 42(4): 643 − 662. doi: 10.12362/j.issn.1671-6647.20230823002 |
[37] |
杨霞, 陈丽华, 郑学良. 不同林龄油松人工林土壤碳、氮和磷生态化学计量特征[J]. 中国水土保持科学, 2021, 19(2): 108 − 116. doi: 10.16843/j.sswc.2021.02.014 |
[38] |
XIE Z X, LI H N, YUAN Y, et al. The spatial patterns and driving mechanisms of blue carbon ‘loss’ and ‘gain’ in a typical mangrove ecosystem: a case study of Beihai, Guangxi Province of China[J]. Science of the Total Environment, 2023, 905: 167241. doi: 10.1016/j.scitotenv.2023.167241 |
[39] |
ALSHAMERI A, HE H P, ZHU J X, et al. Adsorption of ammonium by different natural clay minerals: Characterization, kinetics and adsorption isotherms[J]. Applied Clay Science, 2018, 159: 83 − 93. doi: 10.1016/j.clay.2017.11.007 |
[40] |
SLOMP C P, MORT H P, JILBERT T, et al. Coupled dynamics of iron and phosphorus in sediments of an oligotrophic coastal basin and the impact of anaerobic oxidation of methane[J]. PLoS One, 2013, 8(4): e62386. doi: 10.1371/journal.pone.0062386 |
[41] |
LI X Y, CHENG X Y, CHENG K K, et al. The influence of tide-brought nutrients on microbial carbon metabolic profiles of mangrove sediments[J]. Science of the Total Environment, 2024, 906: 167732. doi: 10.1016/j.scitotenv.2023.167732 |
[42] |
CLEVELAND C C, LIPTZIN D. C: N: P stoichiometry in soil: is there a “redfield ratio” for the microbial biomass?[J]. Biogeochemistry, 2007, 85(3): 235 − 252. doi: 10.1007/s10533-007-9132-0 |
[43] |
陆帅帅, 周念清, 蔡奕, 等. 湖泊湿地潜流带沉积物碳氮磷生态化学计量特征[J]. 地球科学, 2025, 50(4): 1651 − 1662. doi: 10.3799/dqkx.2024.069 |
[44] |
MEI K, LIU J C, XUE L Y, et al. Stimulation of oxalate root exudate in arsenic speciation and fluctuation with phosphate and iron in anoxic mangrove sediment[J]. Marine Pollution Bulletin, 2023, 189: 114823. doi: 10.1016/j.marpolbul.2023.114823 |
[45] |
JAN J, BOROVEC J, KOPÁČEK J, et al. Assessment of phosphorus associated with Fe and Al (hydr)oxides in sediments and soils[J]. Journal of Soils and Sediments, 2015, 15(7): 1620 − 1629. doi: 10.1007/s11368-015-1119-1 |
[46] |
朱伟, 侯豪, 刘环, 等. 太湖底泥磷释放量及释放规律的研究综述[J]. 湖泊科学, 2025, 37(1): 14 − 35. doi: 10.18307/2025.0102 |
[47] |
YANG M L, LIU N, WANG B L, et al. Stepwise degradation of organic matters driven by microbial interactions in China΄s coastal wetlands: evidence from carbon isotope analysis[J]. Water Research, 2024, 250: 121062. doi: 10.1016/j.watres.2023.121062 |
[48] |
ZHANG W Y, WANG Y F, FANG F T, et al. Characterization of sediment organic matter in the outer Yangtze River Estuary using stable isotopes, optical techniques, and FT-ICR-MS: implications for the carbon burial mechanism[J]. Water Research, 2024, 267: 122512. doi: 10.1016/j.watres.2024.122512 |
[49] |
LIE E W, WELANDER T. Influence of dissolved oxygen and oxidation–reduction potential on the denitrification rate of activated sludge[J]. Water Science and Technology, 1994, 30(6): 91 − 100. doi: 10.2166/wst.1994.0256 |
[50] |
严登华, 王刚, 金鑫, 等. 滦河流域不同土地利用类型土壤微生物量C、TN、TP垂直分异规律及其影响因子研究[J]. 生态环境学报, 2010, 19(8): 1844 − 1849. doi: 10.3969/j.issn.1674-5906.2010.08.013 |
[51] |
董潇, 王晓, 宋新桓, 等. 云龙湖沉积物碱性磷酸酶活力特征及其对氮、磷元素的作用[J]. 湿地科学, 2009, 7(4): 368 − 372. doi: 10.13248/j.cnki.wetlandsci.2009.04.008 |
[52] |
张孟燊, 陈志辉, 徐敏, 等. 不同污染天气下大气颗粒物及化学成分干沉降通量的粒径演变特征[J]. 生态环境学报, 2024, 33(12): 1882 − 1890. doi: 10.16258/j.cnki.1674-5906.2024.12.006 |
[53] |
ZHU J X, WANG Q F, HE N P, et al. Imbalanced atmospheric nitrogen and phosphorus depositions in China: implications for nutrient limitation[J]. Journal of Geophysical Research: Biogeosciences, 2016, 121(6): 1605 − 1616. doi: 10.1002/2016JG003393 |
[54] |
王爱萍, 杨守业, 周琪. 长江口崇明东滩湿地沉积物对磷的吸附特征[J]. 生态学杂志, 2006, 25(8): 926 − 930. doi: 10.3321/j.issn:1000-4890.2006.08.011 |
[55] |
梁乐文, 侯佳林, 隋维康, 等. 海洋沉积物微生物介导有机碳转化研究进展[J]. 微生物学报, 2023, 63(5): 1771 − 1786. doi: 10.13343/j.cnki.wsxb.20230305 |