[1] COYNE D L, CORTADA L, DALZELL J J, et al. Plant-parasitic nematodes and food security in sub-Saharan Africa[J]. Annual Review of Phytopathology, 2018, 56: 381 − 403.
[2] JONES J T, HAEGEMAN A, DANCHIN E G J, et al. Top 10 plant-parasitic nematodes in molecular plant pathology[J]. Molecular Plant Pathology, 2013, 14(9): 946 − 961.
[3] DAOUSH A S M, HENDAWEY M H, YASEEN R, et al. Effect of biosynthesized nanoselenium on controlling tomato root-knot nematode Meloidogyne incognita[J]. Agronomy, 2023, 13(7): 1668.
[4] STANLOUS JUMA W, WANJOHI W J, MWANGI M. Compatibility of velum® (synthetic nematicide) with endophytic Colletotrichum nigrum and commercial Trichoderma asperellum against root-knot nematodes on tree tomato[J]. International Journal of Plant & Soil Science, 2024, 36(11): 278 − 292.
[5] QIAO K, LIU Q, ZHANG S. Evaluation of fluazaindolizine, a new nematicide for management of Meloidogyne incognita in squash in calcareous soils[J]. Crop Protection, 2021, 143: 105469.
[6] BROWN C R, MOJTAHEDI H, JAMES S, et al. Development and evaluation of potato breeding lines with introgressed resistance to Columbia root-knot nematode (Meloidogyne chitwoodi) [J]. American Journal of Potato Research, 2006, 83(1): 1 − 8.
[7] NICO A I, JIMéNEZ-Dı́AZ R M, CASTILLO P. Control of root-knot nematodes by composted agro-industrial wastes in potting mixtures[J]. Crop Protection, 2004, 23(7): 581 − 587.
[8] TALAVERA M, VERDEJO-LUCAS S, ORNAT C, et al. Crop rotations with Mi gene resistant and susceptible tomato cultivars for management of root-knot nematodes in plastic houses[J]. Crop Protection, 2009, 28(8): 662 − 667.
[9] BROWN C R, MOJTAHEDI H, JAMES S, et al. Development and evaluation of potato breeding lines with introgressed resistance to Columbia root-knot nematode (Meloidogyne chitwoodi) [J]. American Journal of Potato Research, 2006, 83(1): 1 − 8.
[10] 刘晓艳, 闵勇, 饶犇, 等. 杀线虫剂产品研究进展[J]. 中国生物防治学报, 2021, 37(3): 592 − 597.
[11] 张玉龙, 邹俊杰, 唐艳梅. 根结线虫防治技术研究[J]. 现代农村科技, 2023(7): 52 − 53. doi:  10.3969/j.issn.1674-5329.2023.07.035
[12]

CAO W H, LIU J, ZHOU Q Y, et al. Expression of tobacco ethylene receptor NTHK1 alters plant responses to salt stress [J]. Plant, Cell & Environment, 2006, 29(7): 1210 − 1219.
[13]

RYALS J A, NEUENSCHWANDER U H, WILLITS M G, et al. Systemic acquired resistance[J]. The Plant Cell, 1996, 8(10): 1809.
[14]

VALLAD G E, GOODMAN R M. Systemic acquired resistance and induced systemic resistance in conventional agriculture[J]. Crop Science, 2004, 44(6): 1920 − 1934.
[15]

DA ROCHA A B, HAMMERSCHMIDT R. History and perspectives on the use of disease resistance inducers in horticultural crops[J]. HortTechnology, 2005, 15(3): 518 − 529.
[16]

HOYSTED G A, BELL C A, LILLEY C J, et al. Aphid colonization affects potato root exudate composition and the hatching of a soil borne pathogen[J]. Frontiers in Plant Science, 2018, 9: 1278.
[17]

UDALOVA Z V, FOLMANIS G E, KHASANOV F K, et al. Selenium nanoparticles-an inducer of tomato resistance to the root-knot nematode Meloidogyne incognita (kofoid et white, 1919) chitwood 1949[J]. Doklady Biochemistry and Biophysics, 2018, 482(1): 264 − 267.
[18] 罗永清, 赵学勇, 李美霞. 植物根系分泌物生态效应及其影响因素研究综述[J]. 应用生态学报, 2012, 23(12): 3496 − 3504.
[19]

BIRD D M. Signaling between nematodes and plants[J]. Current Opinion in Plant Biology, 2004, 7(4): 372 − 376.
[20]

REYNOLDS A M, DUTTA T K, CURTIS R H C, et al. Chemotaxis can take plant-parasitic nematodes to the source of a chemo-attractant via the shortest possible routes[J]. Journal of the Royal Society, Interface, 2011, 8(57): 568 − 577.
[21]

KIHIKA R, MURUNGI L K, COYNE D, et al. Parasitic nematode Meloidogyne incognita interactions with different Capsicum annum cultivars reveal the chemical constituents modulating root herbivory[J]. Scientific Reports, 2017, 7(1): 2903.
[22]

MURUNGI L K, KIRWA H, COYNE D, et al. Identification of key root volatiles signaling preference of tomato over spinach by the root knot nematode Meloidogyne incognita[J]. Journal of Agricultural and Food Chemistry, 2018, 66(28): 7328 − 7336.
[23]

SIKDER M M, VESTERGåRD M. Impacts of root metabolites on soil nematodes[J]. Frontiers in Plant Science, 2020, 10: 1792.
[24]

KIRWA H K, MURUNGI L K, BECK J J, et al. Elicitation of differential responses in the root-knot nematode Meloidogyne incognita to tomato root exudate cytokinin, flavonoids, and alkaloids[J]. Journal of Agricultural and Food Chemistry, 2018, 66(43): 11291 − 11300.
[25] 丁晓帆, 邵雨, 范瑞琦, 等. 一种便携式线虫孵化装置: CN211064709U [P]. 2020−07−24.
[26] 王曦茁, 汪来发, 孟繁丽, 等. 淡紫拟青霉航天诱变菌株对南方根结线虫的致病力[J]. 林业科学研究, 2016, 29(2): 216 − 220. doi:  10.3969/j.issn.1001-1498.2016.02.010
[27] 李秋捷, 陆秀红, 黄金玲, 等. 不同药剂对南方根结线虫的室内毒力测定[J]. 浙江农业科学, 2018, 59(8): 1432 − 1433.
[28] 刘勇鹏. 不同杀线虫剂对日光温室番茄根结线虫病防效研究 [D]. 郑州: 河南农业大学, 2018.
[29] 高倩圆, 胡飞龙, 祝红红, 等. 蓖麻提取物和淡紫拟青霉对南方根结线虫的防治作用[J]. 生态学杂志, 2011, 30(10): 2250 − 2256.
[30] 席先梅, 白全江, 李玉民, 等. 41.7%氟吡菌酰胺悬浮剂不同施药时期对黄瓜根结线虫的防治效果[J]. 植物保护, 2021, 47(5): 314 − 319.
[31] 肖靖秀, 郑毅, 汤利. 小麦-蚕豆间作对根系分泌低分子量有机酸的影响[J]. 应用生态学报, 2014, 25(6): 1739 − 1744.
[32]

AKHTAR H, ANITA S, PRABHAT KUMAR S. Studies on the management of root-knot nematode, Meloidogyne incognita-wilt fungus, Fusarium oxysporum disease complex of green gram, Vigna radiata cv ML-1108[J]. Journal of Zhejiang University Science B, 2005, 6(8): 736 − 742.
[33] 陆秀红, 刘志明, 黄金玲, 等. 白花曼陀罗叶提取物对南方根结线虫生长发育的影响[J]. 广西农业生物科学, 2006, 25(2): 136 − 139.
[34]

GIANNAKOU I O, KARPOUZAS D G, ANASTASIADES I, et al. Factors affecting the efficacy of non-fumigant nematicides for controlling root-knot nematodes[J]. Pest Management Science, 2005, 61(10): 961 − 972. doi:  10.1002/ps.1081
[35] 漆永红, 曹素芳, 吕和平, 等. 不同药剂对南方根结线虫卵孵化及2龄幼虫活性的影响[J]. 西北农业学报, 2011, 20(9): 184 − 189. doi:  10.3969/j.issn.1004-1389.2011.09.037
[36]

LI D, JI J, YUAN Y, et al. Toxicity comparison of nanopolystyrene with three metal oxide nanoparticles in nematode Caenorhabditis elegans[J]. Chemosphere, 2020, 245: 125625. doi:  10.1016/j.chemosphere.2019.125625
[37] 李翠英. 福气多[J]. 湖南农业, 2011(7): 16. doi:  10.3969/j.issn.1005-362X.2011.07.040
[38]

LIN S, ZHOU Y, WU J, et al. Dissipation and residue of fosthiazate in tomato and cherry tomato and a risk assessment of dietary intake[J]. Environmental Science and Pollution Research, 2022, 29(6): 9248 − 9256. doi:  10.1007/s11356-021-16305-z
[39]

CHAWLA S, PATEL D J, PATEL S H, et al. Behaviour and risk assessment of fluopyram and its metabolite in cucumber (Cucumis sativus) fruit and in soil[J]. Environmental Science and Pollution Research, 2018, 25(12): 11626 − 11634. doi:  10.1007/s11356-018-1439-y
[40]

ROCHA L F, SUBEDI A, PIMENTEL M F, et al. Fluopyram activates systemic resistance in soybean[J]. Frontiers in Plant Science, 2022, 13: 1020167. doi:  10.3389/fpls.2022.1020167