[1] |
OFOE R, THOMAS R H, ASIEDU S K, et al. Aluminum in plant: Benefits, toxicity and tolerance mechanisms[J]. Frontiers in Plant Science, 2023, 13: 1085998. doi: 10.3389/fpls.2022.1085998 |
[2] |
郭晴艳, 关统伟, 沈治荣, 等. 酸性土壤铝毒害研究进展与展望[J]. 现代农业科技, 2023(9): 147 − 153. |
[3] |
吴道铭, 傅友强, 于智卫, 等. 我国南方红壤酸化和铝毒现状及防治[J]. 土壤, 2013, 45(4): 577 − 584. |
[4] |
沈宏, 严小龙. 铝对植物的毒害和植物抗铝毒机理及其影响因素[J]. 土壤通报, 2001, 32(6): 281 − 285. |
[5] |
夏建华, 钟爱平. 铝与植物代谢[J]. 湖北农学院学报, 1982(4): 117 − 122. |
[6] |
RAHMAN R, UPADHYAYA H. Aluminium toxicity and its tolerance in plant: a review[J]. Journal of Plant Biology, 2021, 64(2): 101 − 121. doi: 10.1007/s12374-020-09280-4 |
[7] |
WATANABE T, OKADA K. Interactive effects of Al, Ca and other cations on root elongation of rice cultivars under low pH[J]. Annals of Botany, 2005, 95(2): 379 − 385. doi: 10.1093/aob/mci032 |
[8] |
CARR S J, RITCHIE G, PORTER W M. A soil test for aluminium toxicity in acidic subsoils of yellow earths in Western Australia[J]. Australian Journal of Agricultural Research, 1991, 42(5): 875 − 892. doi: 10.1071/AR9910875 |
[9] |
APARECIDA RODRIGUES L, MARTINEZ H E P, NEVES J C L, et al. Growth response of coffee tree shoots and roots to subsurface liming[J]. Plant and Soil, 2001, 234(2): 207 − 214. doi: 10.1023/A:1017999318532 |
[10] |
HERRMANN L, BRäU L, ROBIN A, et al. High colonization by native arbuscular mycorrhizal fungi (AMF) of rubber trees in small-holder plantations on low fertility soils in North East Thailand[J]. Archives of Agronomy and Soil Science, 2016, 62(7): 1041 − 1048. doi: 10.1080/03650340.2015.1110238 |
[11] |
BOLAN N S, ADRIANO D C, CURTIN D. Soil acidification and liming interactions with nutrientand heavy metal transformationand bioavailability [M]//Advances in Agronomy. Amsterdam: Elsevier, 2003: 215−272. |
[12] |
NGUYEN B T, DO T K, TRAN T V, et al. High soil Mn and Al, as well as low leaf P concentration, may explain for low natural rubber productivity on a tropical acid soil in Vietnam[J]. Journal of Plant Nutrition, 2018, 41(7): 903 − 914. doi: 10.1080/01904167.2018.1431674 |
[13] |
张晗, 安锋, 袁坤, 等. 不同铝水平胁迫对橡胶树幼苗若干生理指标的影响[J]. 热带作物学报, 2014, 35(10): 1992 − 1996. |
[14] |
安锋, 李昌珍, 张婷婷, 等. 铝胁迫对橡胶苗生理和叶绿素荧光特性的影响[J]. 应用生态学报, 2018, 29(12): 4191 − 4198. |
[15] |
BOYNE A F, ELLMAN G L. A methodology for analysis of tissue sulfhydryl components[J]. Analytical Biochemistry, 1972, 46(2): 639 − 653. doi: 10.1016/0003-2697(72)90335-1 |
[16] |
ASHWELL G. Colorimetric analysis of sugars [M]//Methods in Enzymology. Amsterdam: Elsevier, 1957: 73−105. |
[17] |
TAUSSKY H H, SHORR E, KURZMANN G. A microcolorimetric method for the determination of inorganic phosphorus[J]. Journal of Biological Chemistry, 1953, 202(2): 675 − 685. doi: 10.1016/S0021-9258(18)66180-0 |
[18] |
程成, 史敏晶, 田维敏. 巴西橡胶树胶乳中黄色体破裂指数测定方法的优化[J]. 热带作物学报, 2012, 33(7): 1197 − 1203. |
[19] |
陈慕容, 黄庆春, 叶沙冰, 等. “保01” 防治橡胶树褐皮病及其作用机理的研究[J]. 热带作物研究, 1992, 12(1): 30 − 37. |
[20] |
THAWORNWONG N, VAN DIEST A. Influences of high acidity and aluminum on the growth of lowland rice[J]. Plant and Soil, 1974, 41(1): 141 − 159. doi: 10.1007/BF00017951 |
[21] |
FLOREZ-VELASCO N, RAMOS V F, MAGNITSKIY S, et al. Ethylene and jasmonate as stimulants of latex yield in rubber trees (Hevea brasiliensis): Molecular and physiological mechanisms. A systematic approximation review[J]. Advanced Agrochem, 2024, 3(4): 279 − 288. doi: 10.1016/j.aac.2024.07.003 |
[22] |
ZHAI D L, THALER P, WORTHY F R, et al. Rubber latex yield is affected by interactions between antecedent temperature, rubber phenology, and powdery mildew disease[J]. International Journal of Biometeorology, 2023, 67(10): 1569 − 1579. doi: 10.1007/s00484-023-02515-2 |
[23] |
FUNG K F, CARR H P, ZHANG J, et al. Growth and nutrient uptake of tea under different aluminium concentrations[J]. Journal of the Science of Food and Agriculture, 2008, 88(9): 1582 − 1591. doi: 10.1002/jsfa.3254 |
[24] |
段宏利, 蒋凌雁, 陈志坚, 等. 铝胁迫对狗牙根根系生长和营养元素的影响[J]. 草地学报, 2022, 30(4): 936 − 942. |
[25] |
张婷婷, 刘子凡, 安锋, 等. 铝胁迫造成橡胶苗死亡的机制研究[J]. 热带作物学报, 2020, 41(12): 2439 − 2445. |
[26] |
肖再云, 校现周. 巴西橡胶树胶乳生理诊断的研究与应用[J]. 热带农业科技, 2009, 32(2): 46 − 50. |
[27] |
丁欢, 杨署光, 蒋毅, 等. 强割和乙烯利刺激对不同品系幼龄橡胶树排胶生理特性的影响[J]. 林业科学, 2023, 59(12): 105 − 116. |
[28] |
张晓飞, 黄肖, 左如斌, 等. 3个橡胶树引进品种的胶乳生理特性研究[J]. 热带作物学报, 2021, 42(10): 2869 − 2874. doi: 10.3969/j.issn.1000-2561.2021.10.016 |
[29] |
杨湉, 吴裕, 赵祺, 等. 6个橡胶树优树无性系阶段性综合评价[J]. 西部林业科学, 2024, 53(4): 65 − 71. |
[30] |
JUNAIDI, NURINGTYAS T R, CLéMENT-VIDAL A, et al. Analysis of reduced and oxidized antioxidants in Hevea brasiliensis latex reveals new insights into the regulation of antioxidants in response to harvesting stress and tapping panel dryness[J]. Heliyon, 2022, 8(7): e09840. doi: 10.1016/j.heliyon.2022.e09840 |
[31] |
WITITSUWANNAKUL R, PASITKUL P, KANOKWIROON K, et al. A role for a Hevea latex lectin-like protein in mediating rubber particle aggregation and latex coagulation[J]. Phytochemistry, 2008, 69(2): 339 − 347. doi: 10.1016/j.phytochem.2007.08.019 |
[32] |
SIES H, JONES D P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents[J]. Nature Reviews Molecular Cell Biology, 2020, 21(7): 363 − 383. doi: 10.1038/s41580-020-0230-3 |
[33] |
PUTRANTO R A, HERLINAWATI E, RIO M, et al. Involvement of ethylene in the latex metabolism and tapping panel dryness of Hevea brasiliensis[J]. International Journal of Molecular Sciences, 2015, 16(8): 17885 − 17908. doi: 10.3390/ijms160817885 |
[34] |
郭秀丽, 孙亮, 胡义钰, 等. 巴西橡胶树不同死皮程度植株的胶乳生理参数分析[J]. 南方农业学报, 2016, 47(9): 1553 − 1557. |
[35] |
JACOB J L, D’AUZAC J, PREVÔT J C. The composition of natural latex from Hevea brasiliensis[J]. Clinical Reviews in Allergy, 1993, 11(3): 325 − 337. doi: 10.1007/BF02914415 |