[1] ARZANLOU M, BAKHSHI M, KARIMI K, et al. Multigene phylogeny reveals three new records of Colletotrichum spp. and several new host records for the mycobiota of Iran [J]. Journal of Plant Protection Research., 2015, 55(2): 198 − 211. doi:  10.1515/jppr-2015-0027
[2] LIU X B, LI B X, CAI J M, et al. Colletotrichum species causing anthracnose of rubber trees in China [J]. Scientific Reports, 2018, 8(1): 10435. doi:  10.1038/s41598-018-28166-7
[3] 林春花, 孙董董, 韩丹, 等. 中国橡胶树苗圃2种炭疽病菌分子鉴定及分布分析[J]. 热带作物学报, 2014, 35(9): 1802 − 1808. doi:  10.3969/j.issn.1000-2561.2014.09.024
[4] 连文旭, 王萌, 张宇, 等. 橡胶树胶孢炭疽菌复合群LAMP检测方法的建立及应用[J/OL]. 植物病理学报, [2021−12−17]. https://doi.org/10.13926j.cnki./apps.000780.
[5] 向梅梅, 张云霞, 刘霄. 炭疽菌属真菌分类的研究进展[J]. 仲恺农业工程学院学报, 2017, 30(1): 60 − 66.
[6] 王晓鸣. 陕西省炭疽菌的研究[J]. 真菌学报, 1987, 6(4): 21 − 28.
[7]

SREENIVASAPRASAD S, MILLS P R, MEEHAN B M, et al. Phylogeny and systematics of 18 Colletotrichum species based on ribosomal DNA spacer sequences [J]. Genome, 1996, 39(3): 499 − 512. doi:  10.1139/g96-064
[8]

MORIWAKI J, TSUKIBOSH T, SATO T. Grouping of Colletotrichum species in Japan based on rDNA sequences [J]. Journal of General Plant Pathology, 2002, 68(4): 307 − 320. doi:  10.1007/PL00013096
[9] 彭仁, 习平根, 曾大兴, 等. 我国南方姜科作物炭疽病菌的鉴定及ITS序列分析[J]. 华南农业大学学报(自然科学版), 2008, 24(2): 194 − 196.
[10] 刘晓倩, 祁建民, 陈玉森, 等. 中国红麻炭疽病病原菌的分离鉴定及rDNA-ITS序列分析[J]. 中国农业科学, 2012, 45(17): 3515 − 3521.
[11]

CARLOS A D, DAMM U, BARONCELLI R, et al. Species of the Colletotrichum acutatum complex associated with anthracnose diseases of fruit in Brazil [J]. Fungal Biology, 2016, 120(4): 547 − 561. doi:  10.1016/j.funbio.2016.01.011
[12]

HYDE K, CAI L, CANNON P, et al. Colletotrichum—names in current use [J]. Fungal Diversity, 2009, 39: 147 − 182.
[13]

MADZHAROVA F, HEINER Z, GÜHLKE M, et al. Surface-enhanced hyper raman spectra of adenine, guanine, cytosine, thymine, and uracil [J]. Journal of Physical Chemistry C:Nanomaterials and Interfaces, 2016, 120(28): 15415 − 15423. doi:  10.1021/acs.jpcc.6b02753
[14]

IVLEVA N P, WAGNER M, HORN H, et al. In situ surface-enhanced Raman scattering analysis of biofilm [J]. Analytical Chemistry, 2008, 80(22): 8538 − 8544. doi:  10.1021/ac801426m
[15]

GELDER J D, GUSSEM K D, VANDENABEELE P, et al. Reference database of Raman spectra of biological molecules [J]. Journal of Raman Spectroscopy, 2007, 38(9): 1133 − 1147. doi:  10.1002/jrs.1734
[16]

HUANG W E, GRIFFITHS R I, THOMPSON I P, et al. Raman microscopic analysis of single microbial cells [J], Analytical Chemistry, 2004, 76(15): 4452 - 4458.
[17]

HUANG W E, LI M Q, JARVIS R M, et al. Chapter 5 - shining light on the microbial world: the application of Raman microspectroscopy [J]. Elsevier Science & Technology, 2010, 70: 153 − 186.
[18]

HUANG Y S, KARASHIMA T, YAMAMOTO M, et al. Molecular-level investigation of the structure, transformation, and bioactivity of single living fission yeast cells by time- and space-resolved Raman spectroscopy [J]. Biochemistry, 2005, 44(30): 10009 − 10019. doi:  10.1021/bi050179w
[19]

GAN Q H, WANG X T, YUN W, et al. Culture-free detection of crop pathogens at the single-cell level by micro-Raman spectroscopy [J]. Advanced Science, 2017, 4(11): 1700127. doi:  10.1002/advs.201700127
[20]

WITKOWSKA E, JAGIELSKI T, KAMIŃSKA A. Genus- and species-level identification of dermatophyte fungi by surface-enhanced Raman spectroscopy [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2017, 192(5): 285 − 290.
[21]

GHOSAL S, MACHER J M, AHMED K. Raman microspectroscopy-based identification of individual fungal spores as potential indicators of indoor contamination and moisture-related building damage [J]. Environmental Science & Technology, 2012, 46(11): 6088 − 6095.
[22]

NOOTHALAPATI V H N, SHIGETO S. Stable isotope-labeled Raman imaging reveals dynamic proteome localization to lipid droplets in single fission yeast cells [J]. Chemistry & Biology, 2012, 19(11): 1373 − 1380.
[23]

LIN C C, YANG Y M, LIAO P H, et al. A filter-like AuNPs@MS SERS substrate for Staphylococcus aureus detection [J]. Biosensors & Bioelectronics, 2014, 53(15): 519 − 527.
[24]

RUAN C, WEI W, GU B. Surface-enhanced Raman scattering for perchlorate detection using cystamine-modified gold nanoparticles [J]. Analytica Chimica Acta, 2006, 567(1): 114 − 120. doi:  10.1016/j.aca.2006.01.097
[25]

NOOTHALAPATI H, SASAKI T, KAINO T, et al. Label-free chemical imaging of fungal spore walls by Raman microscopy and multivariate curve resolution analysis [J]. Scientific Reports, 2016(6): 1 − 10.
[26]

SAYIN I, KAHRAMAN M, SAHIN F, et al. Characterization of yeast species using surface-enhanced Raman scattering [J]. Applied Spectroscopy, 2009, 63(11): 1276 − 1282. doi:  10.1366/000370209789806849
[27]

NOOTHALAPATI H, SHIGETO H. Exploring metabolic pathways in vivo by a combined approach of mixed stable isotope-labeled Raman microspectroscopy and multivariate curve resolution analysis [J]. Analytical Chemistry, 2014, 86(15): 7828 − 7834. doi:  10.1021/ac501735c