[1] CALONE R, PENNISI G, MORGENSTERN R, et al. Improving water management in European catfish recirculating aquaculture systems through catfish-lettuce aquaponics[J]. Science of the Total Environment, 2019, 687: 759 − 767. doi:  10.1016/j.scitotenv.2019.06.167
[2] 张文博, 马旭洲. 2000年来中国水产养殖发展趋势和方向[J]. 上海海洋大学学报, 2020, 29(5): 661 − 674. doi:  10.12024/jsou.20190502673
[3] 刘国锋, 徐跑, 吴霆, 等. 中国水产养殖环境氮磷污染现状及未来发展思路[J]. 江苏农业学报, 2018, 34(1): 225 − 233. doi:  10.3969/j.issn.1000-4440.2018.01.033
[4]

HU Z, LEE J W, CHANDRAN K, et al. Nitrous oxide (N2O) emission from aquaculture: a review[J]. Environmental Science & Technology, 2012, 46(12): 6470 − 6480.
[5]

MARTINS C I M, EDING E H, VERDEGEM M C J, et al. New developments in recirculating aquaculture systems in Europe: A perspective on environmental sustainability[J]. Aquacultural Engineering, 2010, 43(3): 83 − 93. doi:  10.1016/j.aquaeng.2010.09.002
[6]

DAUDA A B, AJADI A, TOLA-FABUNMI A S, et al. Waste production in aquaculture: sources, components and managements in different culture systems[J]. Aquaculture and Fisheries, 2019, 4(3): 81 − 88. doi:  10.1016/j.aaf.2018.10.002
[7]

YOGEV U, ATARI A, GROSS A. Nitrous oxide emissions from near-zero water exchange brackish recirculating aquaculture systems[J]. Science of the Total Environment, 2018, 628/629: 603 − 610. doi:  10.1016/j.scitotenv.2018.02.089
[8]

QI W, ZHU S, SHITU A, et al. Low concentration peroxymonosulfate and UVA-LED combination for E. coli inactivation and wastewater disinfection from recirculating aquaculture systems[J]. Journal of Water Process Engineering, 2020, 36: 101362. doi:  10.1016/j.jwpe.2020.101362
[9]

SHITU A, LIU G, MUHAMMAD A I, et al. Recent advances in application of moving bed bioreactors for wastewater treatment from recirculating aquaculture systems: a review[J]. Aquaculture and Fisheries, 2022, 7(3): 244 − 258. doi:  10.1016/j.aaf.2021.04.006
[10]

TAL Y, SCHREIER H J, SOWERS K R, et al. Environmentally sustainable land-based marine aquaculture[J]. Aquaculture, 2009, 286(1/2): 28 − 35.
[11]

YOGEV U, SOWERS K R, MOZES N, et al. Nitrogen and carbon balance in a novel near-zero water exchange saline recirculating aquaculture system[J]. Aquaculture, 2017, 467: 118 − 126. doi:  10.1016/j.aquaculture.2016.04.029
[12]

LUO G, HOU Z, TIAN L, et al. Comparison of nitrate-removal efficiency and bacterial properties using PCL and PHBV polymers as a carbon source to treat aquaculture water[J]. Aquaculture and Fisheries, 2020, 5(2): 92 − 98. doi:  10.1016/j.aaf.2019.04.002
[13]

SUZUKI Y, MARUYAMA T, NUMATA H, et al. Performance of a closed recirculating system with foam separation, nitrification and denitrification units for intensive culture of eel: towards zero emission[J]. Aquacultural Engineering, 2003, 29(3/4): 165 − 182. doi:  10.1016/j.aquaeng.2003.08.001
[14]

LETELIER-GORDO C O, LARSEN B K, DALSGAARD J, et al. The composition of readily available carbon sources produced by fermentation of fish faeces is affected by dietary protein: energy ratios[J]. Aquacultural Engineering, 2017, 77: 27 − 32. doi:  10.1016/j.aquaeng.2017.01.006
[15]

APHA. Standard Methods for the Examination of Water and Wastewater[M]. 23ed Washington: American Public Health Association (APHA), American Water Works Association (AWWA) and Water Environment Federation (WEF), 2017.
[16]

VAN RIJN J, TAL Y, SCHREIER H J. Denitrification in recirculating systems: Theory and applications[J]. Aquacultural Engineering, 2006, 34(3): 364 − 376. doi:  10.1016/j.aquaeng.2005.04.004
[17]

SUHR K I, PEDERSEN P B. Nitrification in moving bed and fixed bed biofilters treating effluent water from a large commercial outdoor rainbow trout RAS[J]. Aquacultural Engineering, 2010, 42(1): 31 − 37. doi:  10.1016/j.aquaeng.2009.10.001
[18]

COLT J. Water quality requirements for reuse systems[J]. Aquacultural Engineering, 2006, 34(3): 143 − 156. doi:  10.1016/j.aquaeng.2005.08.011
[19]

PIEDRAHITA R H. Reducing the potential environmental impact of tank aquaculture effluents through intensification and recirculation[J]. Aquaculture, 2003, 226(1/2/3/4): 35 − 44.
[20]

XIAO P, ZHOU J, LUO X, et al. Enhanced nitrogen removal from high-strength ammonium wastewater by improving heterotrophic nitrification-aerobic denitrification process: insight into the influence of dissolved oxygen in the outer layer of the biofilm[J]. Journal Of Cleaner Production, 2021, 297: 126658. doi:  10.1016/j.jclepro.2021.126658
[21]

LAN M, KANG Y, WANG J, et al. In-situ enrichment and application of heterotrophic nitrification-aerobic denitrification bacteria in membrane aerated biofilm reactor[J]. Chemosphere, 2022, 309: 136643. doi:  10.1016/j.chemosphere.2022.136643
[22]

WU Q , ZOU D , ZHENG X , et al. Effects of antibiotics on anaerobic digestion of sewage sludge: Performance of anaerobic digestion and structure of the microbial community[J]. The Science of the Total Environment, 2022, 845: 157384. doi:  10.1016/j.scitotenv.2022.157384
[23]

SHNEL N, BARAK Y, EZER T, et al. Design and performance of a zero discharge tilapia recirculating system[J]. Aquacultural Engineering, 2002, 26(3): 191 − 203. doi:  10.1016/S0144-8609(02)00013-4
[24]

MARTINS C I M, OCHOLA D, ENDE S S W, et al. Is growth retardation present in Nile tilapia Oreochromis niloticus cultured in low water exchange recirculating aquaculture systems[J]. Aquaculture, 2009, 298(1/2): 43 − 50.
[25]

OLIVEIRA Z A, DE OLIVEIRA C L, DE OLIVEIRA S N, et al. Growth curves byGompertz nonlinear regression model for male and female Nile tilapias from different genetic groups[J]. Aquaculture, 2019, 511: 734243 − 734252.
[26]

VAN RIJN J. Waste treatment in recirculating aquaculture systems[J]. Aquacultural Engineering, 2013, 53: 49 − 56. doi:  10.1016/j.aquaeng.2012.11.010
[27]

XU Z, DAI X, CHAI X. Effect of different carbon sources on denitrification performance, microbial community structure and denitrification genes[J]. Science of the Total Environment, 2018, 634: 195 − 204. doi:  10.1016/j.scitotenv.2018.03.348
[28]

HAMLIN H J, MICHAELS J T, BEAULATON C M, et al. Comparing denitrification rates and carbon sources in commercial scale upflow denitrification biological filters in aquaculture[J]. Aquacultural Engineering, 2008, 38(2): 79 − 92. doi:  10.1016/j.aquaeng.2007.11.003
[29]

LETELIER-GORDO C O, HUANG X, AALTO S L, et al. Activated sludge denitrification in marine recirculating aquaculture system effluent using external and internal carbon sources[J]. Aquacultural Engineering, 2020, 90: 102096. doi:  10.1016/j.aquaeng.2020.102096
[30]

VON AHNEN M, DALSGAARD J, PEDERSEN P B. Effect of different C/N ratios and hydraulic retention times on denitrification in saline, recirculating aquaculture system effluents[J]. Aquacultural Engineering, 2021, 94: 102170. doi:  10.1016/j.aquaeng.2021.102170
[31]

SUHR K I, PEDERSEN P B, ARVIN E. End-of-pipe denitrification using RAS effluent waste streams: Effect of C/N-ratio and hydraulic retention time[J]. Aquacultural Engineering, 2013, 53: 57 − 64. doi:  10.1016/j.aquaeng.2012.11.005
[32]

KATAKI S, WEST H, CLARKE M, et al. Phosphorus recovery as struvite: recent concerns for use of seed, alternative Mg source, nitrogen conservation and fertilizer potential[J]. Resources, Conservation and Recycling, 2016, 107: 142 − 156. doi:  10.1016/j.resconrec.2015.12.009