[1] Cai Z Y, Li G H, Lin C H, et al. Identifying pathogenicity genes in the rubber tree anthracnose fungus Colletotrichum gloeosporioides through random insertional mutagenesis [J]. Microbiological Research, 2013, 168(6): 340−350. https://doi.org/10.1016/j.micres.2013.01.005 doi:  10.1016/j.micres.2013.01.005
[2] 冯淑芬, 刘秀娟, 郑服丛, 等. 橡胶树炭疽菌生物学和侵染特征研究[J]. 热带作物学报, 1998, 19(2): 7−14.
[3]

Liu L P, Zhang L, Qiu P L, et al. Leaf spot of Polygonatum odoratum caused by Colletotrichum spaethianum [J]. Journal of General Plant Pathology, 2020, 86(2): 157−161. https://doi.org/10.1007/s10327-019-00903-4 doi:  10.1007/s10327-019-00903-4
[4] 李博勋, 刘先宝, 陈丽琼, 等. 橡胶树主要病害研究现状与展望[J]. 中国科学: 生命科学, 2024, 54(10): 1798−1813. https://doi.org/10.1360/SSV-2024-0194 doi:  10.1360/SSV-2024-0194
[5] 韩长志. 胶孢炭疽菌侵染过程相关基因研究进展[J]. 广东农业科学, 2014, 41(9): 165−169. https://doi.org/10.16768/j.issn.1004-874x.2014.09.020 doi:  10.16768/j.issn.1004-874x.2014.09.020
[6]

Perfect S E, Hughes H B, O'connell R J, et al. Colletotrichum: a model genus for studies on pathology and fungal–plant interactions [J]. Fungal Genetics and Biology, 1999, 27(2/3): 186−198. https://doi.org/10.1006/fgbi.1999.1143 doi:  10.1006/fgbi.1999.1143
[7]

Chisholm S T, Coaker G, Day B, et al. Host-microbe interactions: shaping the evolution of the plant immune response [J]. Cell, 2006, 124(4): 803−814. https://doi.org/10.1016/j.cell.2006.02.008 doi:  10.1016/j.cell.2006.02.008
[8]

Jones J D G, Dangl J L. The plant immune system [J]. Nature, 2006, 444(7117): 323−329. https://doi.org/10.1038/nature05286 doi:  10.1038/nature05286
[9]

Boller T, He S Y. Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens [J]. Science, 2009, 324(5928): 742−744. https://doi.org/10.1126/science.1171647 doi:  10.1126/science.1171647
[10]

Dangl J L, Horvath D M, Staskawicz B J. Pivoting the plant immune system from dissection to deployment [J]. Science, 2013, 341(6147): 746−751. https://doi.org/10.1126/science.1236011 doi:  10.1126/science.1236011
[11]

Cui H T, Tsuda K, Parker J E. Effector-triggered immunity: from pathogen perception to robust defense [J]. Annual Review of Plant Biology, 2015, 66: 487−511. https://doi.org/10.1146/annurev-arplant-050213-040012 doi:  10.1146/annurev-arplant-050213-040012
[12]

Wu L, Chen H, Curtis C, et al. Go in for the kill: how plants deploy effector-triggered immunity to combat pathogens [J]. Virulence, 2014, 5(7): 710−721. https://doi.org/10.4161/viru.29755 doi:  10.4161/viru.29755
[13]

Oh Y, Donofrio N, Pan H Q, et al. Transcriptome analysis reveals new insight into appressorium formation and function in the rice blast fungus Magnaporthe oryzae [J]. Genome Biology, 2008, 9(5): R85. https://doi.org/10.1186/gb-2008-9-5-r85 doi:  10.1186/gb-2008-9-5-r85
[14] 王美玉. 苹果炭疽叶枯病菌效应蛋白Sntf2抑制植物免疫的分子机制研究[D]. 北京: 中国农业科学院, 2022. doi: 10.27630/d.cnki.gznky.2022.000109
[15] 韩艺娟, 钟振晖, 吴剑英, 等. 稻瘟病菌类LxAR家族基因的预测及表达分析[J]. 热带作物学报, 2018, 39(5): 979−986. https://doi.org/10.3969/j.issn.1000-2561.2018.05.023 doi:  10.3969/j.issn.1000-2561.2018.05.023
[16]

Saier M H, Jr, Tran C V, Barabote R D. TCDB: the Transporter Classification Database for membrane transport protein analyses and information [J]. Nucleic Acids Research, 2006, 34(S1): D181−D186. https://doi.org/10.1093/nar/gkj001 doi:  10.1093/nar/gkj001
[17]

Yan N E. Structural biology of the major facilitator superfamily transporters [J]. Annual Review of Biophysics, 2015, 44: 257−283. https://doi.org/10.1146/annurev-biophys-060414-033901 doi:  10.1146/annurev-biophys-060414-033901
[18]

Chen L H, Tsai H C, Yu P L, et al. A major facilitator superfamily transporter-mediated resistance to oxidative stress and fungicides requires Yap1, Skn7, and MAP kinases in the citrus fungal pathogen Alternaria alternata [J]. PLoS One, 2017, 12(1): e0169103. https://doi.org/10.1371/journal.pone.0169103 doi:  10.1371/journal.pone.0169103
[19]

Calabrese D, Bille J, Sanglard D. A novel multidrug efflux transporter gene of the major facilitator superfamily from Candida albicans (FLU1) conferring resistance to fluconazole [J]. Microbiology, 2000, 146(11): 2743−2754. https://doi.org/10.1099/00221287-146-11-2743 doi:  10.1099/00221287-146-11-2743
[20]

Liu N, Wang Q N, He C Z, et al. CgMFS1, a major facilitator superfamily transporter, is required for sugar transport, oxidative stress resistance, and pathogenicity of Colletotrichum gloeosporioides from Hevea brasiliensis [J]. Current Issues in Molecular Biology, 2021, 43(3): 1548−1557. https://doi.org/10.3390/cimb43030109 doi:  10.3390/cimb43030109
[21] 郭云峰, 安邦. 橡胶树胶孢炭疽菌NADPH氧化酶功能研究[J]. 生物技术通报, 2018, 34(10): 165−171. https://doi.org/10.13560/j.cnki.biotech.bull.1985.2018-0344 doi:  10.13560/j.cnki.biotech.bull.1985.2018-0344
[22]

Drew D, North R A, Nagarathinam K, et al. Structures and general transport mechanisms by the Major Facilitator Superfamily (MFS) [J]. Chemical Reviews, 2021, 121(9): 5289−5335. https://doi.org/10.1021/acs.chemrev.0c00983 doi:  10.1021/acs.chemrev.0c00983
[23]

Zhang S Y, Li C, Si J P, et al. Action mechanisms of effectors in plant-pathogen interaction [J]. International Journal of Molecular Sciences, 2022, 23(12): 6758. https://doi.org/10.3390/ijms23126758 doi:  10.3390/ijms23126758
[24]

Langin G, Gouguet P, Üstün S. Microbial effector proteins-a journey through the proteolytic landscape [J]. Trends in Microbiology, 2020, 28(7): 523−535. https://doi.org/10.1016/j.tim.2020.02.010 doi:  10.1016/j.tim.2020.02.010
[25]

Flor H H. Inheritance of pathogenicity in Melampsora lini [J]. Phytopathology® , 2025, 115(8V): 653−669. https://doi.org/10.1094/Phyto-32-653 doi:  10.1094/Phyto-32-653
[26]

De Wit P J G M, Mehrabi R, Van Den Burg H A, et al. Fungal effector proteins: past, present and future [J]. Molecular Plant Pathology, 2009, 10(6): 735−747. https://doi.org/10.1111/j.1364-3703.2009.00591.x doi:  10.1111/j.1364-3703.2009.00591.x
[27]

De Wit P J G M. How plants recognize pathogens and defend themselves [J]. Cellular and Molecular Life Sciences, 2007, 64(21): 2726−2732. https://doi.org/10.1007/s00018-007-7284-7 doi:  10.1007/s00018-007-7284-7
[28]

Ortiz D, De Guillen K, Cesari S, et al. Recognition of the Magnaporthe oryzae effector AVR-Pia by the decoy domain of the rice NLR immune receptor RGA5 [J]. The Plant Cell, 2017, 29(1): 156−168. https://doi.org/10.1105/tpc.16.00435 doi:  10.1105/tpc.16.00435
[29]

Hemetsberger C, Herrberger C, Zechmann B, et al. The Ustilago maydis effector Pep1 suppresses plant immunity by inhibition of host peroxidase activity [J]. PLoS Pathogens, 2012, 8(5): e1002684. https://doi.org/10.1371/journal.ppat.1002684 doi:  10.1371/journal.ppat.1002684
[30]

Zhu W J, Yu M X, Xu R, et al. Botrytis cinerea BcSSP2 protein is a late infection phase, cytotoxic effector [J]. Environmental Microbiology, 2022, 24(8): 3420−3435. https://doi.org/10.1111/1462-2920.15919 doi:  10.1111/1462-2920.15919
[31]

Sperschneider J, Dodds P N, Gardiner D M, et al. Advances and challenges in computational prediction of effectors from plant pathogenic fungi [J]. PLoS Pathogens, 2015, 11(5): e1004806. https://doi.org/10.1371/journal.ppat.1004806 doi:  10.1371/journal.ppat.1004806
[32]

Thatcher L F, Williams A H, Garg G, et al. Transcriptome analysis of the fungal pathogen Fusarium oxysporum f. sp. medicaginis during colonisation of resistant and susceptible Medicago truncatula hosts identifies differential pathogenicity profiles and novel candidate effectors [J]. BMC Genomics, 2016, 17(1): 860. https://doi.org/10.1186/s12864-016-3192-2 doi:  10.1186/s12864-016-3192-2
[33]

Liu T L, Song T Q, Zhang X, et al. Unconventionally secreted effectors of two filamentous pathogens target plant salicylate biosynthesis [J]. Nature Communications, 2014, 5: 4686. https://doi.org/10.1038/ncomms5686 doi:  10.1038/ncomms5686
[34]

Lovelace A H, Dorhmi S, Hulin M T, et al. Effector identification in plant pathogens [J]. Phytopathology® , 2023, 113(4): 637−650. https://doi.org/10.1094/PHYTO-09-22-0337-KD doi:  10.1094/PHYTO-09-22-0337-KD
[35] 金之鑫, 张晓漫, 梁英梅. 山田胶锈菌性、锈孢子阶段效应蛋白的预测和筛选[J]. 菌物学报, 2025, 44(6): 240341. https://doi.org/10.13346/j.mycosystema.240341 doi:  10.13346/j.mycosystema.240341
[36]

Han Z, Xiong D G, Xu Z Y, et al. The Cytospora chrysosperma virulence effector CcCAP1 mainly localizes to the plant nucleus to suppress plant immune responses [J]. mSphere, 2021, 6(1): e00883−20. https://doi.org/10.1128/mSphere.00883-20 doi:  10.1128/mSphere.00883-20
[37] 熊飞. 基于转录组测序的茶树炭疽菌致病机理初探[D]. 南京: 南京农业大学, 2020. https://doi.org/10.27244/d.cnki.gnjnu.2020.001851
[38]

Han Z, Yu R, Xiong D G, et al. A Sge1 homolog in Cytospora chrysosperma governs conidiation, virulence and the expression of putative effectors [J]. Gene, 2021, 778: 145474. https://doi.org/10.1016/j.gene.2021.145474 doi:  10.1016/j.gene.2021.145474
[39] 盛家伟. 辣椒胶孢炭疽病菌基因Cghn01197Cghn13741对生物学功能的影响[D]. 长沙: 湖南农业大学, 2022. https://doi.org/10.27136/d.cnki.ghunu.2022.001061